These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35665084)

  • 1. Preliminary Observations of the Effect of Temperature and Food Concentration on the Egg Production Rate and Hatching Success of
    El-Sherbiny MM; Al-Aidaroos A
    Zool Stud; 2021; 60():e58. PubMed ID: 35665084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiny but Subitaneous Eggs: Egg Morphology and Hatching in
    Nakajima R; Yoshida T; Sakaguchi SO; Othman BHR; Toda T
    Zool Stud; 2019; 58():e5. PubMed ID: 31966306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes.
    Vehmaa A; Brutemark A; Engström-Öst J
    PLoS One; 2012; 7(10):e48538. PubMed ID: 23119052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature and algal food on egg production and hatching of copepod, Paracalanus parvus.
    Santhanam P; Jeyaraj N; Jothiraj K
    J Environ Biol; 2013 Mar; 34(2):243-6. PubMed ID: 24620586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diet influence on egg production of the copepod Acartia tonsa (Dana, 1896).
    Teixeira PF; Kaminski SM; Avila TR; Cardozo AP; Bersano JG; Bianchini A
    An Acad Bras Cienc; 2010 Jun; 82(2):333-9. PubMed ID: 20563414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel index based on planktonic copepod reproductive traits as a tool for marine ecotoxicology studies.
    Hussain MB; Laabir M; Daly Yahia MN
    Sci Total Environ; 2020 Jul; 727():138621. PubMed ID: 32498212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Reproductive Capacities of the Calanoid Copepods
    Behbehani M; Uddin S; Habibi N; Al-Sarawi HA; Al-Enezi Y
    Animals (Basel); 2023 Jun; 13(13):. PubMed ID: 37443958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do inactivated microbial preparations improve life history traits of the copepod Acartia tonsa?
    Drillet G; Rabarimanantsoa T; Frouël S; Lamson JS; Christensen AM; Kim-Tiam S; Hansen BW
    Mar Biotechnol (NY); 2011 Oct; 13(5):831-6. PubMed ID: 21213117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of temperature and phytoplankton community composition on subitaneous and resting egg production rates of Acartia omorii in Tokyo Bay.
    Tsunashima A; Itoh H; Katano T
    Sci Rep; 2021 Apr; 11(1):7959. PubMed ID: 33846414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations.
    Kurihara H; Ishimatsu A
    Mar Pollut Bull; 2008 Jun; 56(6):1086-90. PubMed ID: 18455195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia tonsa.
    Sew G; Calbet A; Drillet G; Todd PA
    Mar Environ Res; 2018 Sep; 140():251-264. PubMed ID: 30042061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons.
    Jagadeesan L; Jyothibabu R; Arunpandi N; Parthasarathi S
    Environ Monit Assess; 2017 Mar; 189(3):105. PubMed ID: 28205106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grazing impact of the calanoid copepods
    Lee MJ; Hwang YJ; Choi YB; Yoo YD
    Front Microbiol; 2024; 15():1400343. PubMed ID: 38962130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of the toxic dinoflagellate Alexandrium on feeding, reproduction and mortality of the copepod Acartia: A systematic review employing weighted linear models.
    Felpeto AB; Rivera MF; Vasconcelos VM
    Harmful Algae; 2024 Aug; 137():102659. PubMed ID: 39003023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles.
    Zhou C; Vitiello V; Casals E; Puntes VF; Iamunno F; Pellegrini D; Changwen W; Benvenuto G; Buttino I
    Aquat Toxicol; 2016 Jan; 170():1-12. PubMed ID: 26562184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa.
    Krause KE; Dinh KV; Nielsen TG
    Sci Total Environ; 2017 Dec; 607-608():87-94. PubMed ID: 28688259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods
    Barth-Jensen C; Koski M; Varpe Ø; Glad P; Wangensteen OS; Præbel K; Svensen C
    J Plankton Res; 2020; 42(5):564-580. PubMed ID: 32939156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental studies on the feeding and reproduction of Calanoides patagoniensis (Copepoda, Calanoid) in a southern upwelling ecosystem of the Humboldt Current.
    Aguilera VM; Escribano RE
    Mar Environ Res; 2013 Oct; 91():26-33. PubMed ID: 23290445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeding preference and daily ration of 12 dominant copepods on mono and mixed diets of phytoplankton, rotifers, and detritus in a tropical coastal water.
    Jagadeesan L; Jyothibabu R; Arunpandi N; Anjusha A; Parthasarathi S; Pandiyarajan RS
    Environ Monit Assess; 2017 Sep; 189(10):503. PubMed ID: 28894990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.