These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35665165)

  • 1. A Segmentation-Guided Deep Learning Framework for Leaf Counting.
    Fan X; Zhou R; Tjahjadi T; Das Choudhury S; Ye Q
    Front Plant Sci; 2022; 13():844522. PubMed ID: 35665165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf Counting: Fusing Network Components for Improved Accuracy.
    Farjon G; Itzhaky Y; Khoroshevsky F; Bar-Hillel A
    Front Plant Sci; 2021; 12():575751. PubMed ID: 34177972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting.
    Giuffrida MV; Doerner P; Tsaftaris SA
    Plant J; 2018 Nov; 96(4):880-890. PubMed ID: 30101442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doing More With Less: A Multitask Deep Learning Approach in Plant Phenotyping.
    Dobrescu A; Giuffrida MV; Tsaftaris SA
    Front Plant Sci; 2020; 11():141. PubMed ID: 32256503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation.
    Hussein BR; Malik OA; Ong WH; Slik JWF
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CNN-based model to count the leaves of rosette plants (LC-Net).
    Deb M; Dhal KG; Das A; Hussien AG; Abualigah L; Garai A
    Sci Rep; 2024 Jan; 14(1):1496. PubMed ID: 38233479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf Segmentation Using Modified YOLOv8-Seg Models.
    Wang P; Deng H; Guo J; Ji S; Meng D; Bao J; Zuo P
    Life (Basel); 2024 Jun; 14(6):. PubMed ID: 38929762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf Count Aided Novel Framework for Rice (
    Vishal MK; Saluja R; Aggrawal D; Banerjee B; Raju D; Kumar S; Chinnusamy V; Sahoo RN; Adinarayana J
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of plant models in deep learning: an application to leaf counting in rosette plants.
    Ubbens J; Cieslak M; Prusinkiewicz P; Stavness I
    Plant Methods; 2018; 14():6. PubMed ID: 29375647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease.
    Shoaib M; Hussain T; Shah B; Ullah I; Shah SM; Ali F; Park SH
    Front Plant Sci; 2022; 13():1031748. PubMed ID: 36275583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal Hybrid Deep Learning Approach to Detect Tomato Leaf Disease Using Attention Based Dilated Convolution Feature Extractor with Logistic Regression Classification.
    Islam MS; Sultana S; Farid FA; Islam MN; Rashid M; Bari BS; Hashim N; Husen MN
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Plant Leaf Counting Using Deep Object Detection Networks.
    Buzzy M; Thesma V; Davoodi M; Mohammadpour Velni J
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel technique for leaf disease classification using Legion Kernels with parallel support vector machine (LK-PSVM) and fuzzy C means image segmentation.
    Rajagopal M; Kayikci S; Abbas M; Sivasakthivel R
    Heliyon; 2024 Jun; 10(12):e32707. PubMed ID: 38994061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. YOLOv5-FPN: A Robust Framework for Multi-Sized Cell Counting in Fluorescence Images.
    Aldughayfiq B; Ashfaq F; Jhanjhi NZ; Humayun M
    Diagnostics (Basel); 2023 Jul; 13(13):. PubMed ID: 37443674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Approach for Plant Leaf Image Segmentation Based on YOLOV8 and the Improved DEEPLABV3.
    Yang T; Zhou S; Xu A; Ye J; Yin J
    Plants (Basel); 2023 Sep; 12(19):. PubMed ID: 37836178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local refinement mechanism for improved plant leaf segmentation in cluttered backgrounds.
    Ma R; Fuentes A; Yoon S; Lee WY; Kim SC; Kim H; Park DS
    Front Plant Sci; 2023; 14():1211075. PubMed ID: 37711291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.
    Sebai M; Wang X; Wang T
    Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth.
    Bernotas G; Scorza LCT; Hansen MF; Hales IJ; Halliday KJ; Smith LN; Smith ML; McCormick AJ
    Gigascience; 2019 May; 8(5):. PubMed ID: 31127811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning-based model for plant lesion segmentation, subtype identification, and survival probability estimation.
    Shoaib M; Shah B; Hussain T; Ali A; Ullah A; Alenezi F; Gechev T; Ali F; Syed I
    Front Plant Sci; 2022; 13():1095547. PubMed ID: 36589071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.