These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35665282)

  • 1. Research on the Industrial Robot Grasping Method Based on Multisensor Data Fusion and Binocular Vision.
    Xie S
    Comput Intell Neurosci; 2022; 2022():4443100. PubMed ID: 35665282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Pose Testing Method for Medical Service Robots Based on Vision System].
    Hu S; Wu X; Chen X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Mar; 46(2):206-210. PubMed ID: 35411752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Precision Calibration Algorithm for Binocular Stereo Vision Camera using Deep Reinforcement Learning.
    Ren J; Guan F; Wang T; Qian B; Luo C; Cai G; Kan C; Li X
    Comput Intell Neurosci; 2022; 2022():6596868. PubMed ID: 35401726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration and location analysis of a heterogeneous binocular stereo vision system.
    Zhou H; Li C; Sun G; Yin J; Ren F
    Appl Opt; 2021 Aug; 60(24):7214-7222. PubMed ID: 34613009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision Denavit-Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches.
    Khanesar MA; Yan M; Isa M; Piano S; Branson DT
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physician-Friendly Tool Center Point Calibration Method for Robot-Assisted Puncture Surgery.
    Zhang L; Li C; Fan Y; Zhang X; Zhao J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viewing geometry determines the contribution of binocular vision to the online control of grasping.
    Keefe BD; Watt SJ
    Exp Brain Res; 2017 Dec; 235(12):3631-3643. PubMed ID: 28900689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of stereopsis, vergence, and accommodative function to the performance of a precision grasping and placement task in typically developing children age 8-14 years.
    Niechwiej-Szwedo E; Thai G; Christian L
    Hum Mov Sci; 2020 Aug; 72():102652. PubMed ID: 32721372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target location method of intelligent deicing robot based on nonlinear auto disturbance rejection neural network.
    Kong L; Yi C
    Heliyon; 2024 May; 10(9):e29971. PubMed ID: 38707438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics.
    Herrero H; Outón JL; Puerto M; Sallé D; López de Ipiña K
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28561750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint Calibration Method for Robot Measurement Systems.
    Wu L; Zang X; Ding G; Wang C; Zhang X; Liu Y; Zhao J
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Research of an Underactuated Manipulator Based on the Metamorphic Mechanism.
    Sun L; Zhang H; Lin H; Pan W
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grasping deficits and adaptations in adults with stereo vision losses.
    Melmoth DR; Finlay AL; Morgan MJ; Grant S
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3711-20. PubMed ID: 19339741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Object Detection Method for Grasping Robot Based on Improved YOLOv5.
    Song Q; Li S; Bai Q; Yang J; Zhang X; Li Z; Duan Z
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The removal of binocular cues disrupts the calibration of grasping in patients with visual form agnosia.
    Marotta JJ; Behrmann M; Goodale MA
    Exp Brain Res; 1997 Aug; 116(1):113-21. PubMed ID: 9305820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Integrated Multi-Sensor Network for Adaptive Grasping of Fragile Fruits: Design and Feasibility Tests.
    Xie Y; Zhang B; Zhou J; Bai Y; Zhang M
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vision solution for an assisted puncture robotics system positioning.
    Jiang G; Luo M; Lu L; Bai K; Abdelaziz O; Chen S
    Appl Opt; 2018 Oct; 57(28):8385-8393. PubMed ID: 30461793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vision-Based Intelligent Perceiving and Planning System of a 7-DoF Collaborative Robot.
    Xu L; Li G; Song P; Shao W
    Comput Intell Neurosci; 2021; 2021():5810371. PubMed ID: 34630547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When two eyes are better than one in prehension: monocular viewing and end-point variance.
    Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M
    Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Feasibility Tests of a Lightweight Soft Gripper for Compliant and Flexible Envelope Grasping.
    Zhang P; Chen W; Tang B
    Soft Robot; 2022 Apr; 9(2):376-385. PubMed ID: 34097551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.