BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 35665595)

  • 1. Surface Design Strategy of Catalysts for Water Electrolysis.
    Zhou B; Gao R; Zou JJ; Yang H
    Small; 2022 Jul; 18(27):e2202336. PubMed ID: 35665595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline Water Electrolysis for Green Hydrogen Production.
    Tüysüz H
    Acc Chem Res; 2024 Feb; 57(4):558-67. PubMed ID: 38335244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design.
    Li J; Tian W; Li Q; Zhao S
    ChemSusChem; 2024 Mar; ():e202400239. PubMed ID: 38481084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting.
    Inamdar AI; Chavan HS; Hou B; Lee CH; Lee SU; Cha S; Kim H; Im H
    Small; 2020 Jan; 16(2):e1905884. PubMed ID: 31762207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media.
    Yu J; Le TA; Tran NQ; Lee H
    Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cable-Car Electrocatalysis to Drive Fully Decoupled Water Splitting.
    Long Y; Yang C; Wu Y; Deng B; Li Z; Hussain N; Wang K; Wang R; He X; Du P; Guo Z; Lang J; Huang K; Wu H
    Adv Sci (Weinh); 2023 Sep; 10(26):e2301872. PubMed ID: 37395639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts.
    Chang H; Liang Z; Wang L; Wang C
    Nanoscale; 2022 Apr; 14(15):5639-5656. PubMed ID: 35333268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy.
    Chen Z; Yun S; Wu L; Zhang J; Shi X; Wei W; Liu Y; Zheng R; Han N; Ni BJ
    Nanomicro Lett; 2022 Dec; 15(1):4. PubMed ID: 36454315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Copper Porphyrin-Based Conjugated Mesoporous Polymer-Derived Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution.
    Cui S; Qian M; Liu X; Sun Z; Du P
    ChemSusChem; 2016 Sep; 9(17):2365-73. PubMed ID: 27530422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earth-Abundant Transition-Metal-Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen.
    Li A; Sun Y; Yao T; Han H
    Chemistry; 2018 Dec; 24(69):18334-18355. PubMed ID: 30198114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction.
    Xu Y; Zhang X; Liu Y; Wang R; Yang Y; Chen J
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11302-11320. PubMed ID: 36520289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research Advances of Non-Noble Metal Catalysts for Oxygen Evolution Reaction in Acid.
    Yan Z; Guo S; Tan Z; Wang L; Li G; Tang M; Feng Z; Yuan X; Wang Y; Cao B
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects.
    Yu ZY; Duan Y; Feng XY; Yu X; Gao MR; Yu SH
    Adv Mater; 2021 Aug; 33(31):e2007100. PubMed ID: 34117808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting.
    Hu J; Zhou Y; Liu Y; Xu Z; Li H
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review.
    Bodhankar PM; Sarawade PB; Kumar P; Vinu A; Kulkarni AP; Lokhande CD; Dhawale DS
    Small; 2022 May; 18(21):e2107572. PubMed ID: 35285140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Decoupled Electrolytic Water Splitting in Acid through Pseudocapacitive TiO
    Iesalnieks M; Vanags M; Alsiņa LL; Eglītis R; Grīnberga L; Sherrell PC; Šutka A
    Adv Sci (Weinh); 2024 May; ():e2401261. PubMed ID: 38742588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Structure and Constituent of Prussian Blue Analogs on Their Application in Oxygen Evolution Reaction.
    Zhao D; Lu Y; Ma D
    Molecules; 2020 May; 25(10):. PubMed ID: 32422929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.