These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35665657)

  • 21. Improved Protein Real-Valued Distance Prediction Using Deep Residual Dense Network (DRDN).
    Geethu S; Vimina ER
    Protein J; 2022 Oct; 41(4-5):468-476. PubMed ID: 36008645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient dynamic programming algorithm with prior knowledge for protein β-strand alignment.
    Sabzekar M; Naghibzadeh M; Sadri J
    J Theor Biol; 2017 Mar; 417():43-50. PubMed ID: 28108305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SASA-Net: A Spatial-Aware Self-Attention Mechanism for Building Protein 3D Structure Directly From Inter- Residue Distances.
    Gong T; Ju F; Sun S; Bu D
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3482-3488. PubMed ID: 37022274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GDFuzz3D: a method for protein 3D structure reconstruction from contact maps, based on a non-Euclidean distance function.
    Pietal MJ; Bujnicki JM; Kozlowski LP
    Bioinformatics; 2015 Nov; 31(21):3499-505. PubMed ID: 26130575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CMWeb: an interactive on-line tool for analysing residue-residue contacts and contact prediction methods.
    Kozma D; Simon I; Tusnády GE
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W329-33. PubMed ID: 22669913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks.
    Eickholt J; Cheng J
    BMC Bioinformatics; 2013; 14 Suppl 14(Suppl 14):S12. PubMed ID: 24267585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. rrQNet: Protein contact map quality estimation by deep evolutionary reconciliation.
    Roche R; Bhattacharya S; Shuvo MH; Bhattacharya D
    Proteins; 2022 Dec; 90(12):2023-2034. PubMed ID: 35751651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FilterDCA: Interpretable supervised contact prediction using inter-domain coevolution.
    Muscat M; Croce G; Sarti E; Weigt M
    PLoS Comput Biol; 2020 Oct; 16(10):e1007621. PubMed ID: 33035205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CNNcon: improved protein contact maps prediction using cascaded neural networks.
    Ding W; Xie J; Dai D; Zhang H; Xie H; Zhang W
    PLoS One; 2013; 8(4):e61533. PubMed ID: 23626696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of residue-residue contact prediction in CASP10.
    Monastyrskyy B; D'Andrea D; Fidelis K; Tramontano A; Kryshtafovych A
    Proteins; 2014 Feb; 82 Suppl 2(0 2):138-53. PubMed ID: 23760879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using inferred residue contacts to distinguish between correct and incorrect protein models.
    Miller CS; Eisenberg D
    Bioinformatics; 2008 Jul; 24(14):1575-82. PubMed ID: 18511466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era.
    Kamisetty H; Ovchinnikov S; Baker D
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15674-9. PubMed ID: 24009338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins.
    Roche R; Bhattacharya S; Bhattacharya D
    PLoS Comput Biol; 2021 Feb; 17(2):e1008753. PubMed ID: 33621244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting protein residue-residue contacts using deep networks and boosting.
    Eickholt J; Cheng J
    Bioinformatics; 2012 Dec; 28(23):3066-72. PubMed ID: 23047561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of several key factors influencing deep learning-based inter-residue contact prediction.
    Wu T; Hou J; Adhikari B; Cheng J
    Bioinformatics; 2020 Feb; 36(4):1091-1098. PubMed ID: 31504181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using Attention-UNet Models to Predict Protein Contact Maps.
    Jisna VA; Ajay AP; Jayaraj PB
    J Comput Biol; 2024 Jul; 31(7):691-702. PubMed ID: 38979621
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.