These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35665657)
41. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Adhikari B; Hou J; Cheng J Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185 [TBL] [Abstract][Full Text] [Related]
42. Prediction of folding mechanisms for Ig-like beta sandwich proteins based on inter-residue average distance statistics methods. Aumpuchin P; Kikuchi T Proteins; 2019 Feb; 87(2):120-135. PubMed ID: 30520530 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of residue-residue contact predictions in CASP9. Monastyrskyy B; Fidelis K; Tramontano A; Kryshtafovych A Proteins; 2011; 79 Suppl 10(Suppl 10):119-25. PubMed ID: 21928322 [TBL] [Abstract][Full Text] [Related]
44. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Wu S; Zhang Y Bioinformatics; 2008 Apr; 24(7):924-31. PubMed ID: 18296462 [TBL] [Abstract][Full Text] [Related]
45. Freeprotmap: waiting-free prediction method for protein distance map. Huang J; Li J; Chen Q; Wang X; Chen G; Tang J BMC Bioinformatics; 2024 May; 25(1):176. PubMed ID: 38704533 [TBL] [Abstract][Full Text] [Related]
46. A method for protein accessibility prediction based on residue types and conformational states. Zarei R; Arab S; Sadeghi M Comput Biol Chem; 2007 Oct; 31(5-6):384-8. PubMed ID: 17888743 [TBL] [Abstract][Full Text] [Related]
47. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Hou J; Wu T; Cao R; Cheng J Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027 [TBL] [Abstract][Full Text] [Related]
48. Refined Contact Map Prediction of Peptides Based on GCN and ResNet. Gu J; Zhang T; Wu C; Liang Y; Shi X Front Genet; 2022; 13():859626. PubMed ID: 35571037 [TBL] [Abstract][Full Text] [Related]
49. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Morcos F; Pagnani A; Lunt B; Bertolino A; Marks DS; Sander C; Zecchina R; Onuchic JN; Hwa T; Weigt M Proc Natl Acad Sci U S A; 2011 Dec; 108(49):E1293-301. PubMed ID: 22106262 [TBL] [Abstract][Full Text] [Related]
50. ISSEC: inferring contacts among protein secondary structure elements using deep object detection. Zhang Q; Zhu J; Ju F; Kong L; Sun S; Zheng WM; Bu D BMC Bioinformatics; 2020 Nov; 21(1):503. PubMed ID: 33153432 [TBL] [Abstract][Full Text] [Related]
51. Accurate prediction of helix interactions and residue contacts in membrane proteins. Hönigschmid P; Frishman D J Struct Biol; 2016 Apr; 194(1):112-23. PubMed ID: 26851352 [TBL] [Abstract][Full Text] [Related]
52. An amino acid map of inter-residue contact energies using metric multi-dimensional scaling. Rakshit S; Ananthasuresh GK J Theor Biol; 2008 Jan; 250(2):291-7. PubMed ID: 17981305 [TBL] [Abstract][Full Text] [Related]
53. An introduction to protein contact prediction. Hamilton N; Huber T Methods Mol Biol; 2008; 453():87-104. PubMed ID: 18712298 [TBL] [Abstract][Full Text] [Related]
54. Co-evolutionary distance predictions contain flexibility information. Schwarz D; Georges G; Kelm S; Shi J; Vangone A; Deane CM Bioinformatics; 2021 Dec; 38(1):65-72. PubMed ID: 34383892 [TBL] [Abstract][Full Text] [Related]
55. Improving accuracy of protein contact prediction using balanced network deconvolution. Sun HP; Huang Y; Wang XF; Zhang Y; Shen HB Proteins; 2015 Mar; 83(3):485-96. PubMed ID: 25524593 [TBL] [Abstract][Full Text] [Related]
56. Protein contact map prediction using multi-stage hybrid intelligence inference systems. Abu-Doleh AA; Al-Jarrah OM; Alkhateeb A J Biomed Inform; 2012 Feb; 45(1):173-83. PubMed ID: 22079474 [TBL] [Abstract][Full Text] [Related]
57. Prediction of kinetics of protein folding with non-redundant contact information. Censoni L; Martínez L Bioinformatics; 2018 Dec; 34(23):4034-4038. PubMed ID: 29931141 [TBL] [Abstract][Full Text] [Related]
59. A de novo protein structure prediction by iterative partition sampling, topology adjustment and residue-level distance deviation optimization. Liu J; Zhao KL; He GX; Wang LJ; Zhou XG; Zhang GJ Bioinformatics; 2021 Dec; 38(1):99-107. PubMed ID: 34459867 [TBL] [Abstract][Full Text] [Related]
60. Identification of amino acids involved in protein structural uniqueness: implication for de novo protein design. Isogai Y; Ota M; Ishii A; Ishida M; Nishikawa K Protein Eng; 2002 Jul; 15(7):555-60. PubMed ID: 12200537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]