BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35665927)

  • 1. Using total RNA quality metrics for time since deposition estimates in degrading bloodstains.
    Elliott CI; Stotesbury TE; Shafer ABA
    J Forensic Sci; 2022 Sep; 67(5):1776-1785. PubMed ID: 35665927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying visible absorbance changes and DNA degradation in aging bloodstains under extreme temperatures.
    Cossette ML; Stotesbury T; Shafer ABA
    Forensic Sci Int; 2021 Jan; 318():110627. PubMed ID: 33296804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman Spectroscopy for the Time since Deposition Estimation of a Menstrual Bloodstain.
    Weber A; Wójtowicz A; Wietecha-Posłuszny R; Lednev IK
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: A forensic analysis.
    Cavalcanti DR; Silva LP
    Forensic Sci Int; 2019 Aug; 301():254-262. PubMed ID: 31181409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DV200 Index for Assessing RNA Integrity in Next-Generation Sequencing.
    Matsubara T; Soh J; Morita M; Uwabo T; Tomida S; Fujiwara T; Kanazawa S; Toyooka S; Hirasawa A
    Biomed Res Int; 2020; 2020():9349132. PubMed ID: 32185225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Raman "spectroscopic clock" for bloodstain age determination: the first week after deposition.
    Doty KC; McLaughlin G; Lednev IK
    Anal Bioanal Chem; 2016 Jun; 408(15):3993-4001. PubMed ID: 27007735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age estimation of bloodstains using smartphones and digital image analysis.
    Thanakiatkrai P; Yaodam A; Kitpipit T
    Forensic Sci Int; 2013 Dec; 233(1-3):288-97. PubMed ID: 24314532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massively parallel sequencing of microRNA in bloodstains and evaluation of environmental influences on miRNA candidates using realtime polymerase chain reaction.
    Fang C; Zhao J; Li J; Qian J; Liu X; Sun Q; Liu W; Tian Y; Ji A; Wu H; Yan J
    Forensic Sci Int Genet; 2019 Jan; 38():32-38. PubMed ID: 30321749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining how diluted bloodstains were derived: Inferring distinctive characteristics and formulating a guideline.
    van den Berge M; de Vries FG; van der Scheer M; Sijen T; Meijrink L
    Forensic Sci Int; 2019 Sep; 302():109918. PubMed ID: 31421437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bloodstain examination and DNA typing from hand-washed bloodstains on clothes.
    Nakanishi H; Ohmori T; Yoneyama K; Hara M; Takada A; Saito K
    Leg Med (Tokyo); 2020 Nov; 47():101758. PubMed ID: 32702606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of storage conditions on forensic examinations of blood samples and bloodstains stored for 20 years.
    Hara M; Nakanishi H; Yoneyama K; Saito K; Takada A
    Leg Med (Tokyo); 2016 Jan; 18():81-4. PubMed ID: 26832383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of environmental conditions on the rate of RNA degradation in dried blood stains.
    Heneghan N; Fu J; Pritchard J; Payton M; Allen RW
    Forensic Sci Int Genet; 2021 Mar; 51():102456. PubMed ID: 33444974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemoglobin subunit beta protein as a novel marker for time since deposition of bloodstains at crime scenes.
    Heo TM; Gwon SY; Yang JH; Hyun SH; Kang HG; Sung HJ
    Forensic Sci Int; 2022 Jul; 336():111348. PubMed ID: 35635979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of infrared photography for latent bloodstain visualization and the influence of time.
    Winnepenninckx A; Verhoeven E; Vermeulen S; Bekaert B
    Forensic Sci Int; 2022 Feb; 331():111167. PubMed ID: 34992011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to obtaining reliable PCR results from luminol treated bloodstains.
    Della Manna A; Montpetit S
    J Forensic Sci; 2000 Jul; 45(4):886-90. PubMed ID: 10914590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains?
    Bauer M; Polzin S; Patzelt D
    Forensic Sci Int; 2003 Dec; 138(1-3):94-103. PubMed ID: 14642725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bloodstain age estimation through infrared spectroscopy and Chemometric models.
    Kumar R; Sharma K; Sharma V
    Sci Justice; 2020 Nov; 60(6):538-546. PubMed ID: 33077037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short and Long Time Bloodstains Age Determination by Colorimetric Analysis: A Pilot Study.
    Marrone A; La Russa D; Montesanto A; Lagani V; La Russa MF; Pellegrino D
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA isolation from bloodstains collected on FTA cards - application in clinical and forensic genetics.
    Skonieczna K; Styczyński J; Krenska A; Wysocki M; Jakubowska A; Grzybowski T
    Arch Med Sadowej Kryminol; 2016; 66(4):244-254. PubMed ID: 28677379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The estimation of age of bloodstains by HPLC analysis.
    Andrasko J
    J Forensic Sci; 1997 Jul; 42(4):601-7. PubMed ID: 9243825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.