These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35666013)

  • 1. Depth estimation of tumor invasion in early gastric cancer using scattering of circularly polarized light: Monte Carlo Simulation study.
    Nishizawa N; Kuchimaru T
    J Biophotonics; 2022 Oct; 15(10):e202200062. PubMed ID: 35666013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angular optimization for cancer identification with circularly polarized light.
    Nishizawa N; Al-Qadi B; Kuchimaru T
    J Biophotonics; 2021 Mar; 14(3):e202000380. PubMed ID: 33295146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media.
    Kunnen B; Macdonald C; Doronin A; Jacques S; Eccles M; Meglinski I
    J Biophotonics; 2015 Apr; 8(4):317-23. PubMed ID: 25328034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the spatial distribution of polarized light backscattered from layered scattering media.
    Stockford IM; Morgan SP; Chang PC; Walker JG
    J Biomed Opt; 2002 Jul; 7(3):313-20. PubMed ID: 12175280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of coherent polarized light in turbid highly scattering medium.
    Doronin A; Macdonald C; Meglinski I
    J Biomed Opt; 2014 Feb; 19(2):025005. PubMed ID: 24556700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology.
    Wood MF; Guo X; Vitkin IA
    J Biomed Opt; 2007; 12(1):014029. PubMed ID: 17343504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth probing of diffuse tissues controlled with elliptically polarized light.
    Rehn S; Planat-Chrétien A; Berger M; Dinten JM; Deumié C; da Silva A
    J Biomed Opt; 2013 Jan; 18(1):16007. PubMed ID: 23296039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the depolarization of circularly polarized light in turbid scattering media.
    Macdonald CM
    J Opt Soc Am A Opt Image Sci Vis; 2018 Dec; 35(12):2104-2110. PubMed ID: 30645285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling optical fluence and diffuse reflectance distribution in normal and cancerous breast tissues exposed to planar and Gaussian NIR beam shapes using Monte Carlo simulation.
    Hassan NI; Hassan YM; Mustafa TA; Hamdy O
    Lasers Med Sci; 2023 Apr; 38(1):96. PubMed ID: 37004565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose.
    Wang X; Yao G; Wang LV
    Appl Opt; 2002 Feb; 41(4):792-801. PubMed ID: 11993927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction.
    Holmer C; Lehmann KS; Wanken J; Reissfelder C; Roggan A; Mueller G; Buhr HJ; Ritz JP
    J Biomed Opt; 2007; 12(1):014025. PubMed ID: 17343500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments.
    Wang X; Wang LV; Sun CW; Yang CC
    J Biomed Opt; 2003 Oct; 8(4):608-17. PubMed ID: 14563198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths.
    van der Laan JD; Scrymgeour DA; Kemme SA; Dereniak EL
    Appl Opt; 2015 Mar; 54(9):2266-74. PubMed ID: 25968509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior signal persistence of circularly polarized light in polydisperse, real-world fog environments.
    van der Laan JD; Wright JB; Kemme SA; Scrymgeour DA
    Appl Opt; 2018 Jul; 57(19):5464-5473. PubMed ID: 30117842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra.
    Liu Q; Ramanujam N
    Appl Opt; 2006 Jul; 45(19):4776-90. PubMed ID: 16799693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appearance of circularly polarized light in an atmosphere-ocean system.
    Adams JT
    Appl Opt; 2020 Oct; 59(29):9174-9184. PubMed ID: 33104629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.