These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35666104)

  • 1. Hydrodynamic model of fish orientation in a channel flow.
    Porfiri M; Zhang P; Peterson SD
    Elife; 2022 Jun; 11():. PubMed ID: 35666104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheotaxis revisited: a multi-behavioral and multisensory perspective on how fish orient to flow.
    Coombs S; Bak-Coleman J; Montgomery J
    J Exp Biol; 2020 Dec; 223(Pt 23):. PubMed ID: 33293337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information.
    Bak-Coleman J; Court A; Paley DA; Coombs S
    J Exp Biol; 2013 Nov; 216(Pt 21):4011-24. PubMed ID: 23913948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lateral line is necessary for blind cavefish rheotaxis in non-uniform flow.
    Kulpa M; Bak-Coleman J; Coombs S
    J Exp Biol; 2015 May; 218(Pt 10):1603-12. PubMed ID: 25827837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sedentary behavior as a factor in determining lateral line contributions to rheotaxis.
    Bak-Coleman J; Coombs S
    J Exp Biol; 2014 Jul; 217(Pt 13):2338-47. PubMed ID: 24737771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lateral line system is not necessary for rheotaxis in the Mexican blind cavefish (Astyanax fasciatus).
    Van Trump WJ; McHenry MJ
    Integr Comp Biol; 2013 Nov; 53(5):799-809. PubMed ID: 23722083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of turbulence on the sensory basis of rheotaxis.
    Elder J; Coombs S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jul; 201(7):667-80. PubMed ID: 25994410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole- and vortex sheet-based models of fish swimming.
    Zhang P; Peterson SD; Porfiri M
    J Theor Biol; 2023 Jan; 556():111313. PubMed ID: 36261068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish.
    Ristroph L; Liao JC; Zhang J
    Phys Rev Lett; 2015 Jan; 114(1):018102. PubMed ID: 25615505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propensity of undulatory swimmers, such as worms, to go against the flow.
    Yuan J; Raizen DM; Bau HH
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3606-11. PubMed ID: 25775552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
    Thandiackal R; Lauder G
    Elife; 2023 Feb; 12():. PubMed ID: 36744863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals.
    Cresci A; De Rosa R; Putman NF; Agnisola C
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Feb; 204():169-176. PubMed ID: 27915151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Change in rheotactic behavior patterns of dinoflagellates in response to different microfluidic environments.
    Li SW; Lin PH; Ho TY; Hsieh CH; Sun CL
    Sci Rep; 2021 May; 11(1):11105. PubMed ID: 34045568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic device for quantitative investigation of zebrafish larvae's rheotaxis.
    Peimani AR; Zoidl G; Rezai P
    Biomed Microdevices; 2017 Nov; 19(4):99. PubMed ID: 29116415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling multi-sensory feedback control of zebrafish in a flow.
    Burbano-L DA; Porfiri M
    PLoS Comput Biol; 2021 Jan; 17(1):e1008644. PubMed ID: 33481795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective orientation of an immobile fish school and effect on rheotaxis.
    Larrieu R; Quilliet C; Dupont A; Peyla P
    Phys Rev E; 2021 Feb; 103(2-1):022137. PubMed ID: 33736021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheotaxis performance increases with group size in a coupled phase model with sensory noise: The effects of noise and group size on rheotaxis.
    Chicoli A; Bak-Coleman J; Coombs S; Paley DA
    Eur Phys J Spec Top; 2015 Dec; 224(17-18):3233-3244. PubMed ID: 27175224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swimming behavior of emigrating Chinook Salmon smolts.
    Holleman RC; Gross ES; Thomas MJ; Rypel AL; Fangue NA
    PLoS One; 2022; 17(3):e0263972. PubMed ID: 35290382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall.
    Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3819-31. PubMed ID: 21037061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.