BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35666156)

  • 1. Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
    Kang M; Zuo Z; Yin Z; Gu J
    J Chem Inf Model; 2022 Jun; 62(12):3057-3066. PubMed ID: 35666156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why Does the E1219V Mutation Expand T-Rich PAM Recognition in Cas9 from
    Bhattacharya S; Satpati P
    J Chem Inf Model; 2024 Apr; 64(8):3237-3247. PubMed ID: 38600752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into a high fidelity variant of SpCas9.
    Guo M; Ren K; Zhu Y; Tang Z; Wang Y; Zhang B; Huang Z
    Cell Res; 2019 Mar; 29(3):183-192. PubMed ID: 30664728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
    Hirano S; Nishimasu H; Ishitani R; Nureki O
    Mol Cell; 2016 Mar; 61(6):886-94. PubMed ID: 26990991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered dual selection for directed evolution of SpCas9 PAM specificity.
    Goldberg GW; Spencer JM; Giganti DO; Camellato BR; Agmon N; Ichikawa DM; Boeke JD; Noyes MB
    Nat Commun; 2021 Jan; 12(1):349. PubMed ID: 33441553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR
    Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor.
    Wang J; Teng Y; Zhang R; Wu Y; Lou L; Zou Y; Li M; Xie ZR; Yan Y
    Nat Commun; 2021 Nov; 12(1):6916. PubMed ID: 34824292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Analysis of Small Molecule Inhibitors of CRISPR-Cas9 in Human Cells.
    Yang Y; Li D; Wan F; Chen B; Wu G; Li F; Ren Y; Liang P; Wan J; Songyang Z
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria.
    Wang J; Teng Y; Gong X; Zhang J; Wu Y; Lou L; Li M; Xie ZR; Yan Y
    Metab Eng; 2023 Jan; 75():68-77. PubMed ID: 36404524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.
    Anders C; Bargsten K; Jinek M
    Mol Cell; 2016 Mar; 61(6):895-902. PubMed ID: 26990992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth assessment of the PAM compatibility and editing activities of Cas9 variants.
    Zhang W; Yin J; Zhang-Ding Z; Xin C; Liu M; Wang Y; Ai C; Hu J
    Nucleic Acids Res; 2021 Sep; 49(15):8785-8795. PubMed ID: 34133740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structure-based optimization and design of CRISPR protein xCas9].
    Xue D; Zhu H; Du W; Tang H; Huang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1385-1395. PubMed ID: 33973451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a
    Teng Y; Wang J; Jiang T; Zou Y; Yan Y
    ACS Synth Biol; 2023 Sep; 12(9):2764-2772. PubMed ID: 37643152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared with SpCas9 in Genome Editing.
    Yang ZX; Fu YW; Zhao JJ; Zhang F; Li SA; Zhao M; Wen W; Zhang L; Cheng T; Zhang JP; Zhang XB
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1206-1220. PubMed ID: 36549468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.
    Kim HK; Lee S; Kim Y; Park J; Min S; Choi JW; Huang TP; Yoon S; Liu DR; Kim HH
    Nat Biomed Eng; 2020 Jan; 4(1):111-124. PubMed ID: 31937939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9.
    Hibshman GN; Bravo JPK; Hooper MM; Dangerfield TL; Zhang H; Finkelstein IJ; Johnson KA; Taylor DW
    Nat Commun; 2024 Apr; 15(1):3663. PubMed ID: 38688943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.