These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35666186)

  • 1. Local Phonon Environment as a Design Element for Long-Lived Excitonic Coherence: Dithia-anthracenophane Revisited.
    Sidhardh GL; Ajith A; Sebastian E; Hariharan M; Shaji A
    J Phys Chem A; 2022 Jun; 126(23):3765-3773. PubMed ID: 35666186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibronic enhancement of excitation energy transport: Interplay between local and non-local exciton-phonon interactions.
    Lee MH; Troisi A
    J Chem Phys; 2017 Feb; 146(7):075101. PubMed ID: 28228034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigation of the mechanism and dynamics of intramolecular coherent resonance energy transfer in soft molecules: a case study of dithia-anthracenophane.
    Yang L; Caprasecca S; Mennucci B; Jang S
    J Am Chem Soc; 2010 Dec; 132(47):16911-21. PubMed ID: 21050006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of near-resonance vibronic coherence lifetimes by nonadiabatic electronic-vibrational state character mixing.
    Yeh SH; Hoehn RD; Allodi MA; Engel GS; Kais S
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18263-18268. PubMed ID: 30093387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton linewidth broadening induced by exciton-phonon interactions in CsPbBr
    Yu B; Zhang C; Chen L; Huang X; Qin Z; Wang X; Xiao M
    J Chem Phys; 2021 Jun; 154(21):214502. PubMed ID: 34240983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Dynamics of Exciton Transport and Dissociation in Multichromophoric Systems.
    Popp W; Brey D; Binder R; Burghardt I
    Annu Rev Phys Chem; 2021 Apr; 72():591-616. PubMed ID: 33636997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of long-lived quantum coherence and excitation dynamics in pigment-protein complexes.
    Zhang Z; Wang J
    Sci Rep; 2016 Nov; 6():37629. PubMed ID: 27876861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence.
    Plenio MB; Almeida J; Huelga SF
    J Chem Phys; 2013 Dec; 139(23):235102. PubMed ID: 24359393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum decoherence in finite size exciton-phonon systems.
    Pouthier V
    J Chem Phys; 2011 Mar; 134(11):114516. PubMed ID: 21428641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center.
    Policht VR; Niedringhaus A; Willow R; Laible PD; Bocian DF; Kirmaier C; Holten D; Mančal T; Ogilvie JP
    Sci Adv; 2022 Jan; 8(1):eabk0953. PubMed ID: 34985947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon anharmonicity-induced decoherence slowing down in exciton-phonon systems.
    Pouthier V
    J Phys Condens Matter; 2010 Jun; 22(25):255601. PubMed ID: 21393804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of a One-Dimensional Holstein Polaron with the Hierarchical Equations of Motion Approach.
    Chen L; Zhao Y; Tanimura Y
    J Phys Chem Lett; 2015 Aug; 6(15):3110-5. PubMed ID: 26267210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent Vibronic Coupling in Light-Harvesting Complexes from Photosynthetic Marine Algae.
    Richards GH; Wilk KE; Curmi PM; Quiney HM; Davis JA
    J Phys Chem Lett; 2012 Jan; 3(2):272-7. PubMed ID: 26698327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr
    Becker MA; Scarpelli L; Nedelcu G; Rainò G; Masia F; Borri P; Stöferle T; Kovalenko MV; Langbein W; Mahrt RF
    Nano Lett; 2018 Dec; 18(12):7546-7551. PubMed ID: 30407011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence Spectroscopy in the Condensed Phase: Insights into Molecular Structure, Environment, and Interactions.
    Dean JC; Scholes GD
    Acc Chem Res; 2017 Nov; 50(11):2746-2755. PubMed ID: 29043773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Structured Environments for Efficient Energy Transfer: The Phonon Antenna Mechanism.
    Rey MD; Chin AW; Huelga SF; Plenio MB
    J Phys Chem Lett; 2013 Mar; 4(6):903-7. PubMed ID: 26291354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton transfer in organic photovoltaic cells: A role of local and nonlocal electron-phonon interactions in a donor domain.
    Cainelli M; Tanimura Y
    J Chem Phys; 2021 Jan; 154(3):034107. PubMed ID: 33499615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon-driven exciton dissociation at donor-acceptor polymer heterojunctions: direct versus bridge-mediated vibronic coupling pathways.
    Tamura H; Ramon JG; Bittner ER; Burghardt I
    J Phys Chem B; 2008 Jan; 112(2):495-506. PubMed ID: 18081341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite CH_{3}NH_{3}PbI_{3}.
    Liu Z; Vaswani C; Yang X; Zhao X; Yao Y; Song Z; Cheng D; Shi Y; Luo L; Mudiyanselage DH; Huang C; Park JM; Kim RHJ; Zhao J; Yan Y; Ho KM; Wang J
    Phys Rev Lett; 2020 Apr; 124(15):157401. PubMed ID: 32357060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant Coupling of a Moiré Exciton to a Phonon in a WSe
    Shinokita K; Miyauchi Y; Watanabe K; Taniguchi T; Matsuda K
    Nano Lett; 2021 Jul; 21(14):5938-5944. PubMed ID: 34269588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.