These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35666186)

  • 41. Photoinduced Enhancement of Excitonic Order.
    Murakami Y; Golež D; Eckstein M; Werner P
    Phys Rev Lett; 2017 Dec; 119(24):247601. PubMed ID: 29286755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes.
    Caram JR; Engel GS
    Faraday Discuss; 2011; 153():93-104; discussion 189-212. PubMed ID: 22452075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atomic fluctuations in electronic materials revealed by dephasing.
    Palato S; Seiler H; Nijjar P; Prezhdo O; Kambhampati P
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11940-11946. PubMed ID: 32409603
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of an underdamped vibration with both diagonal and off-diagonal exciton-phonon interactions on excitation energy transfer.
    Wang YC; Zhao Y
    J Comput Chem; 2019 Apr; 40(10):1097-1104. PubMed ID: 30549065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence.
    Madrid AB; Hyeon-Deuk K; Habenicht BF; Prezhdo OV
    ACS Nano; 2009 Sep; 3(9):2487-94. PubMed ID: 19722505
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How Markovian is exciton dynamics in purple bacteria?
    Vaughan F; Linden N; Manby FR
    J Chem Phys; 2017 Mar; 146(12):124113. PubMed ID: 28388114
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors.
    Niehues I; Schmidt R; Drüppel M; Marauhn P; Christiansen D; Selig M; Berghäuser G; Wigger D; Schneider R; Braasch L; Koch R; Castellanos-Gomez A; Kuhn T; Knorr A; Malic E; Rohlfing M; Michaelis de Vasconcellos S; Bratschitsch R
    Nano Lett; 2018 Mar; 18(3):1751-1757. PubMed ID: 29389133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses.
    Jakubczyk T; Delmonte V; Fischbach S; Wigger D; Reiter DE; Mermillod Q; Schnauber P; Kaganskiy A; Schulze JH; Strittmatter A; Rodt S; Langbein W; Kuhn T; Reitzenstein S; Kasprzak J
    ACS Photonics; 2016 Dec; 3(12):2461-2466. PubMed ID: 28713845
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonadiabatic quantum dynamics based on a hierarchical electron-phonon model: exciton dissociation in semiconducting polymers.
    Tamura H; Bittner ER; Burghardt I
    J Chem Phys; 2007 Jul; 127(3):034706. PubMed ID: 17655454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dephasing and dissipation in a source-drain model of light-harvesting systems.
    Xiong SJ; Chen L; Zhao Y
    Chemphyschem; 2014 Sep; 15(13):2859-70. PubMed ID: 25044624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimized excitonic transport mediated by local energy defects: Survival of optimization laws in the presence of dephasing.
    Pepe L; Pouthier V; Yalouz S
    Phys Rev E; 2024 Jan; 109(1-1):014303. PubMed ID: 38366455
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulation of Quantum Dynamics of Excitonic Systems at Finite Temperature: an efficient method based on Thermo Field Dynamics.
    Borrelli R; Gelin MF
    Sci Rep; 2017 Aug; 7(1):9127. PubMed ID: 28831074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in Förster resonance energy transfer.
    Yeltik A; Guzelturk B; Hernandez-Martinez PL; Govorov AO; Demir HV
    ACS Nano; 2013 Dec; 7(12):10492-501. PubMed ID: 24274734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of coherence, localization and excitation transfer in disordered nanorings.
    Somoza AD; Sun KW; Molina RA; Zhao Y
    Phys Chem Chem Phys; 2017 Oct; 19(38):25996-26013. PubMed ID: 28920601
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy.
    Lin ML; Miscuglio M; Polovitsyn A; Leng YC; Martín-García B; Moreels I; Tan PH; Krahne R
    J Phys Chem Lett; 2019 Feb; 10(3):399-405. PubMed ID: 30626187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonadiabatic sunlight harvesting.
    Calderón LF; Pachón LA
    Phys Chem Chem Phys; 2020 Jun; 22(22):12678-12687. PubMed ID: 32458928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The vibronic absorption spectra and exciton dynamics of plasmon-exciton hybrid systems in the regimes ranged from Fano antiresonance to Rabi-like splitting.
    Zhang B; Liang W
    J Chem Phys; 2020 Jan; 152(1):014102. PubMed ID: 31914739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exciton-Phonon Coupling of Chiral One-Dimensional Lead-Free Hybrid Metal Halides at Room Temperature.
    Li Z; Yan Y; Song MS; Xin JY; Wang HY; Wang H; Wang Y
    J Phys Chem Lett; 2022 May; 13(18):4073-4081. PubMed ID: 35499477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures.
    Cassette E; Pensack RD; Mahler B; Scholes GD
    Nat Commun; 2015 Jan; 6():6086. PubMed ID: 25597912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exciton-phonon system on a star graph: A perturbative approach.
    Yalouz S; Pouthier V
    Phys Rev E; 2016 May; 93(5):052306. PubMed ID: 27300909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.