BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35666192)

  • 1. Combination of a dispersive solid phase extraction method based on octadecylamine modified magnetic nanoparticles with dispersive liquid-liquid microextraction for the extraction and preconcentration of pesticides.
    Farajzadeh MA; Fazli N; Pezhhanfar S; Afshar Mogaddam MR
    Anal Methods; 2022 Jun; 14(24):2376-2388. PubMed ID: 35666192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.
    Farajzadeh MA; Mohebbi A
    J Chromatogr A; 2018 Jan; 1532():10-19. PubMed ID: 29174132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved magnetic solid-phase extraction based on magnetic sorbent obtained from sand for the extraction of pesticides from fruit juice.
    Mohebbi A; Farajzadeh MA; Sorouraddin SM; Abbaspour M
    J Sci Food Agric; 2022 Aug; 102(10):4266-4275. PubMed ID: 35040126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a magnetic sorbent and its application in extraction of different pesticides from water, fruit, and vegetable samples prior to their determination by gas chromatography-tandem mass spectrometry.
    Yadeghari A; Farajzadeh MA
    J Chromatogr A; 2021 Jan; 1635():461718. PubMed ID: 33229005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical synthesis-free and facile preparation of magnetized polyethylene composite and its application as an efficient magnetic sorbent for some pesticides.
    Mohebbi A; Farajzadeh MA
    J Chromatogr A; 2020 Aug; 1625():461340. PubMed ID: 32709363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples.
    Zahiri E; Khandaghi J; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2020 Sep; 1627():461390. PubMed ID: 32823096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    Talanta; 2016 Jan; 146():772-9. PubMed ID: 26695329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic dispersive solid-phase extraction of some pesticides from fruit juices using monodisperse nanosorbent combined with dispersive liquid-liquid micro-extraction.
    Farajzadeh MA; Shaghaghipour S; Abbaspour M; Afshar Mogaddam MR
    Anal Sci; 2023 Mar; 39(3):303-312. PubMed ID: 36539608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a dispersive solid phase extraction method based on in situ formation of adsorbent followed by dispersive liquid-liquid microextraction for extraction of some pesticide residues in fruit juice samples.
    Farajzadeh MA; Sattari Dabbagh M
    J Chromatogr A; 2020 Sep; 1627():461398. PubMed ID: 32823103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a method based on dispersive liquid-liquid microextraction followed by partial vaporization of the extract for ultra-preconcentration of some pesticide residues in fruit juices.
    Farajzadeh MA; Kiavar L; Pezhhanfar S
    J Chromatogr A; 2021 Sep; 1653():462427. PubMed ID: 34332315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An all-embracing analytical method comprising modified QuEChERS-dispersive micro-solid-phase extraction-dispersive liquid-liquid microextraction using FeGA MOF for the extraction and preconcentration of pesticides simultaneously from juice and flesh of watermelon.
    Pezhhanfar S; Farajzadeh MA; Hosseini-Yazdi SA; Mogaddam MRA
    Anal Sci; 2023 Aug; 39(8):1201-1214. PubMed ID: 37017814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of homogeneous dispersive solid phase extraction using albumin as a green sorbent and its combination with dispersive liquid-liquid microextraction: application in extraction of pesticides from fruit juices.
    Afshar Mogaddam MR; Farajzadeh MA; Abbasalizadeh A; Nemati M; Alizadeh Nabil AA; Tuzen M; Pourali A
    Anal Methods; 2023 Aug; 15(33):4187-4193. PubMed ID: 37581438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riboflavin as a green sorbent in dispersive micro-solid-phase extraction of several pesticides from fruit juices combined with dispersive liquid-liquid microextraction.
    Abbasalizadeh A; Sorouraddin SM; Farajzadeh MA; Marzi E; Afshar Mogaddam MR
    J Sep Sci; 2022 May; 45(9):1550-1559. PubMed ID: 35220687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic dispersive solid-phase extraction of some polycyclic aromatic hydrocarbons from honey samples using iron (III) oxinate nanocomposite as an efficient sorbent.
    Farajzadeh MA; Pasandi S; Mohebbi A; Afshar Mogaddam MR
    J Sep Sci; 2022 Jul; 45(14):2642-2651. PubMed ID: 35510591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified quick-easy-cheap-effective-rugged-and-safe method involving carbon nano-onions-based dispersive solid-phase extraction and dispersive liquid-liquid microextraction for pesticides from grapes.
    Mokhtari S; Khosrowshahi EM; Farajzadeh MA; Nemati M; Afshar Mogaddam MR
    J Sep Sci; 2022 Sep; 45(18):3582-3593. PubMed ID: 35964286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection.
    Samadi S; Sereshti H; Assadi Y
    J Chromatogr A; 2012 Jan; 1219():61-5. PubMed ID: 22153286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a magnetic dispersive solid phase extraction method by employing folic acid magnetic nanoparticles as an effective, green, and reliable sorbent followed by dispersive liquid-liquid microextraction for the extraction and preconcentration of seven pesticides from fruit juices.
    Farajzadeh MA; Niazi S; Sattari Dabbagh M
    Mikrochim Acta; 2021 Aug; 188(9):314. PubMed ID: 34462821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyphenated dispersive solid- and liquid-phase microextraction technique based on a hydrophobic deep eutectic solvent: application for trace analysis of pesticides in fruit juices.
    Sereshti H; Jamshidi F; Nouri N; Nodeh HR
    J Sci Food Agric; 2020 Apr; 100(6):2534-2543. PubMed ID: 31975389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Mohebbi A; Feriduni B
    Anal Chim Acta; 2016 May; 920():1-9. PubMed ID: 27114217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.