BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 35666447)

  • 1. Design, Characterization, and Application of Targeted Gene Activation in Bacteria Using a Modular CRISPRa System.
    Villegas Kcam MC; Chappell J
    Methods Mol Biol; 2022; 2518():203-215. PubMed ID: 35666447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the Distinct Properties of a Bacterial Type I-E CRISPR Activation System.
    Villegas Kcam MC; Tsong AJ; Chappell J
    ACS Synth Biol; 2022 Feb; 11(2):1000-1003. PubMed ID: 35077145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range.
    Villegas Kcam MC; Tsong AJ; Chappell J
    Nucleic Acids Res; 2021 May; 49(8):4793-4802. PubMed ID: 33823546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements.
    Fontana J; Dong C; Kiattisewee C; Chavali VP; Tickman BI; Carothers JM; Zalatan JG
    Nat Commun; 2020 Apr; 11(1):1618. PubMed ID: 32238808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable bacterial CRISPR transcriptional activation enables metabolic engineering in Pseudomonas putida.
    Kiattisewee C; Dong C; Fontana J; Sugianto W; Peralta-Yahya P; Carothers JM; Zalatan JG
    Metab Eng; 2021 Jul; 66():283-295. PubMed ID: 33930546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria.
    Liu Y; Wan X; Wang B
    Nat Commun; 2019 Aug; 10(1):3693. PubMed ID: 31451697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems.
    Tickman BI; Burbano DA; Chavali VP; Kiattisewee C; Fontana J; Khakimzhan A; Noireaux V; Zalatan JG; Carothers JM
    Cell Syst; 2022 Mar; 13(3):215-229.e8. PubMed ID: 34800362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-mediated transcriptional activation with synthetic guide RNA.
    Strezoska Ž; Dickerson SM; Maksimova E; Chou E; Gross MM; Hemphill K; Hardcastle T; Perkett M; Stombaugh J; Miller GW; Anderson EM; Vermeulen A; Smith AVB
    J Biotechnol; 2020 Aug; 319():25-35. PubMed ID: 32470463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable CRISPR-Cas transcriptional activation in bacteria.
    Ho HI; Fang JR; Cheung J; Wang HH
    Mol Syst Biol; 2020 Jul; 16(7):e9427. PubMed ID: 32657546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Eukaryote-Like CRISPR Activation Tool in Bacteria: Features and Capabilities.
    Liu Y; Wang B
    Bioessays; 2020 Jun; 42(6):e1900252. PubMed ID: 32310310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted Activation of Arabidopsis Genes by a Potent CRISPR-Act3.0 System.
    Pan C; Qi Y
    Methods Mol Biol; 2023; 2698():27-40. PubMed ID: 37682467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants.
    Pan C; Wu X; Markel K; Malzahn AA; Kundagrami N; Sretenovic S; Zhang Y; Cheng Y; Shih PM; Qi Y
    Nat Plants; 2021 Jul; 7(7):942-953. PubMed ID: 34168320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications.
    Becirovic E
    Cell Mol Life Sci; 2022 Feb; 79(2):130. PubMed ID: 35152318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile, high-efficiency platform for CRISPR-based gene activation.
    Heidersbach AJ; Dorighi KM; Gomez JA; Jacobi AM; Haley B
    Nat Commun; 2023 Feb; 14(1):902. PubMed ID: 36804928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the CRISPR system to transactivate coagulation gene promoters in normal and mutated contexts.
    Pignani S; Zappaterra F; Barbon E; Follenzi A; Bovolenta M; Bernardi F; Branchini A; Pinotti M
    Biochim Biophys Acta Gene Regul Mech; 2019 Jun; 1862(6):619-624. PubMed ID: 31005673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Scope of Bacterial CRISPR Activation with PAM-Flexible dCas9 Variants.
    Kiattisewee C; Karanjia AV; Legut M; Daniloski Z; Koplik SE; Nelson J; Kleinstiver BP; Sanjana NE; Carothers JM; Zalatan JG
    ACS Synth Biol; 2022 Dec; 11(12):4103-4112. PubMed ID: 36378874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering.
    Fontana J; Sparkman-Yager D; Zalatan JG; Carothers JM
    Curr Opin Biotechnol; 2020 Aug; 64():190-198. PubMed ID: 32599515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
    Bendixen L; Jensen TI; Bak RO
    Mol Ther; 2023 Jul; 31(7):1920-1937. PubMed ID: 36964659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Cardiomyocyte Transcription Using In Vivo CRISPR/Cas9 Systems.
    Schoger E; Zelarayán LC
    Methods Mol Biol; 2022; 2573():53-61. PubMed ID: 36040586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.