BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 35666447)

  • 21. Engineering activatable promoters for scalable and multi-input CRISPRa/i circuits.
    Alba Burbano D; Cardiff RAL; Tickman BI; Kiattisewee C; Maranas CJ; Zalatan JG; Carothers JM
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2220358120. PubMed ID: 37463216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR activation and interference as investigative tools in the cardiovascular system.
    Carroll MS; Giacca M
    Int J Biochem Cell Biol; 2023 Feb; 155():106348. PubMed ID: 36563996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPRactivation-SMS, a message for PAM sequence independent gene up-regulation in Escherichia coli.
    Klanschnig M; Cserjan-Puschmann M; Striedner G; Grabherr R
    Nucleic Acids Res; 2022 Oct; 50(18):10772-10784. PubMed ID: 36134715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Off-target effects of CRISPRa on interleukin-6 expression.
    Soubeyrand S; Lau P; Peters V; McPherson R
    PLoS One; 2019; 14(10):e0224113. PubMed ID: 31658298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of Genome Editing and Transcriptional Control Capabilities Reveals Hierarchies among Diverse CRISPR/Cas Systems in Human Cells.
    Escobar M; Li J; Patel A; Liu S; Xu Q; Hilton IB
    ACS Synth Biol; 2022 Oct; 11(10):3239-3250. PubMed ID: 36162812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA.
    Lundh M; Pluciñska K; Isidor MS; Petersen PSS; Emanuelli B
    Mol Metab; 2017 Oct; 6(10):1313-1320. PubMed ID: 29031730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput screen reveals sRNAs regulating crRNA biogenesis by targeting CRISPR leader to repress Rho termination.
    Lin P; Pu Q; Wu Q; Zhou C; Wang B; Schettler J; Wang Z; Qin S; Gao P; Li R; Li G; Cheng Z; Lan L; Jiang J; Wu M
    Nat Commun; 2019 Aug; 10(1):3728. PubMed ID: 31427601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Next-generation CRISPR/Cas9 transcriptional activation in
    Jia Y; Xu RG; Ren X; Ewen-Campen B; Rajakumar R; Zirin J; Yang-Zhou D; Zhu R; Wang F; Mao D; Peng P; Qiao HH; Wang X; Liu LP; Xu B; Ji JY; Liu Q; Sun J; Perrimon N; Ni JQ
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4719-4724. PubMed ID: 29666231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/dCas-mediated gene activation toolkit development and its application for parthenogenesis induction in maize.
    Qi X; Gao H; Lv R; Mao W; Zhu J; Liu C; Mao L; Li X; Xie C
    Plant Commun; 2023 Mar; 4(2):100449. PubMed ID: 36089769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas RNA Scaffolds for Transcriptional Programming in Yeast.
    Zalatan JG
    Methods Mol Biol; 2017; 1632():341-357. PubMed ID: 28730450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New CRISPR-Cas systems from uncultivated microbes.
    Burstein D; Harrington LB; Strutt SC; Probst AJ; Anantharaman K; Thomas BC; Doudna JA; Banfield JF
    Nature; 2017 Feb; 542(7640):237-241. PubMed ID: 28005056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient and specific regulation of gene expression using enhanced CRISPR-Cas12f system.
    Oh Y; Gwon LW; Lee HK; Hur JK; Park KH; Kim KP; Lee SH
    Gene Ther; 2024 Jun; ():. PubMed ID: 38918512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Awakening dormant glycosyltransferases in CHO cells with CRISPRa.
    Karottki KJC; Hefzi H; Xiong K; Shamie I; Hansen AH; Li S; Pedersen LE; Li S; Lee JS; Lee GM; Kildegaard HF; Lewis NE
    Biotechnol Bioeng; 2020 Feb; 117(2):593-598. PubMed ID: 31631317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimized strategy for in vivo Cas9-activation in
    Ewen-Campen B; Yang-Zhou D; Fernandes VR; González DP; Liu LP; Tao R; Ren X; Sun J; Hu Y; Zirin J; Mohr SE; Ni JQ; Perrimon N
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):9409-9414. PubMed ID: 28808002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General guidelines for CRISPR/Cas-based genome editing in plants.
    Aksoy E; Yildirim K; Kavas M; Kayihan C; Yerlikaya BA; Çalik I; Sevgen İ; Demirel U
    Mol Biol Rep; 2022 Dec; 49(12):12151-12164. PubMed ID: 36107373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Cas6e ribonuclease is not required for interference and adaptation by the E. coli type I-E CRISPR-Cas system.
    Semenova E; Kuznedelov K; Datsenko KA; Boudry PM; Savitskaya EE; Medvedeva S; Beloglazova N; Logacheva M; Yakunin AF; Severinov K
    Nucleic Acids Res; 2015 Jul; 43(12):6049-61. PubMed ID: 26013814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplexed CRISPR Activation of Cryptic Sugar Metabolism Enables Yarrowia Lipolytica Growth on Cellobiose.
    Schwartz C; Curtis N; Löbs AK; Wheeldon I
    Biotechnol J; 2018 Sep; 13(9):e1700584. PubMed ID: 29729131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM
    Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas system in microbial hosts for terpenoid production.
    Chu LL
    Crit Rev Biotechnol; 2022 Nov; 42(7):1116-1133. PubMed ID: 35139706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.