These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 35666449)

  • 1. Harnessing CRISPR-Cas9 for Epigenetic Engineering.
    Guerra-Resendez RS; Hilton IB
    Methods Mol Biol; 2022; 2518():237-251. PubMed ID: 35666449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-based epigenome editing: mechanisms and applications.
    Fadul SM; Arshad A; Mehmood R
    Epigenomics; 2023 Nov; 15(21):1137-1155. PubMed ID: 37990877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
    Kabadi AM; Machlin L; Dalal N; Lee RE; McDowell I; Shah NN; Drowley L; Randell SH; Reddy TE
    J Cyst Fibros; 2022 Jan; 21(1):164-171. PubMed ID: 34049825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of Cell Lines Stably Expressing a dCas9-Fusion or sgRNA to Address Dynamics of Long-Term Effects of Epigenetic Editing.
    Sarno F; Koncz M; Eilers RE; Verschure PJ; Rots MG
    Methods Mol Biol; 2024; 2842():289-307. PubMed ID: 39012602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for Allele-Specific Epigenome Editing Using CRISPR/dCas9.
    Rajaram N; Bashtrykov P; Jeltsch A
    Methods Mol Biol; 2024; 2842():179-192. PubMed ID: 39012596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers.
    Hilton IB; D'Ippolito AM; Vockley CM; Thakore PI; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2015 May; 33(5):510-7. PubMed ID: 25849900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA.
    Woodward EA; Wang E; Wallis C; Sharma R; Tie AWJ; Murthy N; Blancafort P
    Methods Mol Biol; 2024; 2842():267-287. PubMed ID: 39012601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Targeted DNA Methylation with dCas9-Coupled DNMT3A-DNMT3L Methyltransferase.
    Bashtrykov P; Rajaram N; Jeltsch A
    Methods Mol Biol; 2023; 2577():177-188. PubMed ID: 36173573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger.
    Song L; Ouedraogo JP; Kolbusz M; Nguyen TTM; Tsang A
    PLoS One; 2018; 13(8):e0202868. PubMed ID: 30142205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana.
    Ghoshal B; Vong B; Picard CL; Feng S; Tam JM; Jacobsen SE
    PLoS Genet; 2020 Dec; 16(12):e1008983. PubMed ID: 33315895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.