These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35666471)
21. Discovery of novel selective phosphodiesterase‑1 inhibitors for the treatment of acute myelogenous leukemia. Le ML; Yang YY; Jiang MY; Han C; Guo ZR; Liu RD; Zhao ZJ; Zhou Q; Wen S; Wu Y Bioorg Chem; 2024 Mar; 144():107114. PubMed ID: 38224637 [TBL] [Abstract][Full Text] [Related]
22. The phosphodiesterase inhibitory selectivity and the in vitro and in vivo potency of the new PDE5 inhibitor vardenafil. Saenz de Tejada I; Angulo J; Cuevas P; Fernández A; Moncada I; Allona A; Lledó E; Körschen HG; Niewöhner U; Haning H; Pages E; Bischoff E Int J Impot Res; 2001 Oct; 13(5):282-90. PubMed ID: 11890515 [TBL] [Abstract][Full Text] [Related]
24. Expression and activity of cAMP phosphodiesterase isoforms in pulmonary artery smooth muscle cells from patients with pulmonary hypertension: role for PDE1. Murray F; Patel HH; Suda RY; Zhang S; Thistlethwaite PA; Yuan JX; Insel PA Am J Physiol Lung Cell Mol Physiol; 2007 Jan; 292(1):L294-303. PubMed ID: 16980375 [TBL] [Abstract][Full Text] [Related]
25. Potent tetracyclic guanine inhibitors of PDE1 and PDE5 cyclic guanosine monophosphate phosphodiesterases with oral antihypertensive activity. Ahn HS; Bercovici A; Boykow G; Bronnenkant A; Chackalamannil S; Chow J; Cleven R; Cook J; Czarniecki M; Domalski C; Fawzi A; Green M; Gündes A; Ho G; Laudicina M; Lindo N; Ma K; Manna M; McKittrick B; Mirzai B; Nechuta T; Neustadt B; Puchalski C; Pula K; Zhang H J Med Chem; 1997 Jul; 40(14):2196-210. PubMed ID: 9216839 [TBL] [Abstract][Full Text] [Related]
26. Contribution of phosphodiesterase isoenzymes and cyclic nucleotide efflux to the regulation of cyclic GMP levels in aortic smooth muscle cells. Mercapide J; Santiago E; Alberdi E; Martinez-Irujo JJ Biochem Pharmacol; 1999 Nov; 58(10):1675-83. PubMed ID: 10535760 [TBL] [Abstract][Full Text] [Related]
27. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. Suvarna NU; O'Donnell JM J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724 [TBL] [Abstract][Full Text] [Related]
28. Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. Samidurai A; Xi L; Das A; Iness AN; Vigneshwar NG; Li PL; Singla DK; Muniyan S; Batra SK; Kukreja RC Pharmacol Ther; 2021 Oct; 226():107858. PubMed ID: 33895190 [TBL] [Abstract][Full Text] [Related]
29. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Verde I; Vandecasteele G; Lezoualc'h F; Fischmeister R Br J Pharmacol; 1999 May; 127(1):65-74. PubMed ID: 10369457 [TBL] [Abstract][Full Text] [Related]
30. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases. Kokkonen K; Kass DA Annu Rev Pharmacol Toxicol; 2017 Jan; 57():455-479. PubMed ID: 27732797 [TBL] [Abstract][Full Text] [Related]
31. The calcium/calmodulin-dependent phosphodiesterase PDE1C down-regulates glucose-induced insulin secretion. Han P; Werber J; Surana M; Fleischer N; Michaeli T J Biol Chem; 1999 Aug; 274(32):22337-44. PubMed ID: 10428803 [TBL] [Abstract][Full Text] [Related]
32. Cyclic nucleotide phosphodiesterases in rabbit detrusor smooth muscle. Qiu Y; Kraft P; Craig EC; Liu X; Haynes-Johnson D Urology; 2002 Jan; 59(1):145-9. PubMed ID: 11796312 [TBL] [Abstract][Full Text] [Related]
33. Functional plasticity of cyclic AMP hydrolysis in rat adenohypophysial corticotroph cells. Ang KL; Antoni FA Cell Signal; 2002 May; 14(5):445-52. PubMed ID: 11882389 [TBL] [Abstract][Full Text] [Related]
34. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis. Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454 [TBL] [Abstract][Full Text] [Related]
35. cAMP phosphodiesterase inhibitors potentiate effects of prostacyclin analogs in hypoxic pulmonary vascular remodeling. Phillips PG; Long L; Wilkins MR; Morrell NW Am J Physiol Lung Cell Mol Physiol; 2005 Jan; 288(1):L103-15. PubMed ID: 15377497 [TBL] [Abstract][Full Text] [Related]
36. The Construction and Application of a New Screening Method for Phosphodiesterase Inhibitors. Gao C; Wang Z; Liu X; Sun R; Ma S; Ma Z; Wang Q; Li G; Zhang HT Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785726 [TBL] [Abstract][Full Text] [Related]
37. In vitro pharmacology of the novel phosphodiesterase type 4 inhibitor, CP-80633. Cohan VL; Showell HJ; Fisher DA; Pazoles CJ; Watson JW; Turner CR; Cheng JB J Pharmacol Exp Ther; 1996 Sep; 278(3):1356-61. PubMed ID: 8819523 [TBL] [Abstract][Full Text] [Related]
38. Endoplasmic reticulum stress mediates homocysteine-induced hypertrophy of cardiac cells through activation of cyclic nucleotide phosphodiesterase 1C. Sun W; Zhou Y; Xue H; Hou H; He G; Yang Q Acta Biochim Biophys Sin (Shanghai); 2022 Mar; 54(3):388-399. PubMed ID: 35538034 [TBL] [Abstract][Full Text] [Related]
39. Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. Mokni W; Keravis T; Etienne-Selloum N; Walter A; Kane MO; Schini-Kerth VB; Lugnier C PLoS One; 2010 Dec; 5(12):e14227. PubMed ID: 21151982 [TBL] [Abstract][Full Text] [Related]