BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35666779)

  • 1. Investigate the Relationship between Structure and Triplet Potential Energy Surface to Control the Phosphorescence Quantum Yield of Platinum(II) Complex: A Theoretical Investigation.
    Luo Y; Guo Y; Shou X; Chen Z; Xu Z; Tang D
    Inorg Chem; 2022 Jun; 61(24):9162-9172. PubMed ID: 35666779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the Triplet Potential Energy Surface of Bimetallic Platinum(II) Complex by Constructing Structure-Property Relationship: A Theoretical Exploration.
    Luo Y; Cheng Y; Zhang D; Mei X; Tang D; Hu J; Luo T
    Inorg Chem; 2023 Feb; 62(5):2440-2455. PubMed ID: 36701493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Studies of Photodeactivation Pathways of NHC-Chelate Pt(II) Compounds with Different Numbers of Triarylboron Units: Radiative and Nonradiative Decay Processes.
    Zhang F; Xu Y; Zhang W; Shen W; Li M; He R
    J Phys Chem A; 2017 Jan; 121(3):690-698. PubMed ID: 28040894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of pyrazolate-bridged dinuclear platinum(II) complexes: interesting potential energy curve of the lowest energy triplet excited state and phosphorescence spectra.
    Saito K; Nakao Y; Sakaki S
    Inorg Chem; 2008 May; 47(10):4329-37. PubMed ID: 18416550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do ligands influence the quantum yields of cyclometalated platinum(ii) complexes, a theoretical research study.
    Yang B; Huang S; Wang J
    Phys Chem Chem Phys; 2017 Aug; 19(34):23454-23460. PubMed ID: 28828459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational scheme for evaluating the phosphorescence quantum efficiency: applied to blue-emitting tetradentate Pt(II) complexes.
    Wang Y; Peng Q; Shuai Z
    Mater Horiz; 2022 Jan; 9(1):334-341. PubMed ID: 34842258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited states of thiophene: ring opening as deactivation mechanism.
    Salzmann S; Kleinschmidt M; Tatchen J; Weinkauf R; Marian CM
    Phys Chem Chem Phys; 2008 Jan; 10(3):380-92. PubMed ID: 18174980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-Emission Property Relationships in Cyclometalated Pt(II) β-Diketonate Complexes.
    Heil A; Marian CM
    Inorg Chem; 2019 May; 58(9):6123-6136. PubMed ID: 31021083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum-Chemical Insights into the Phosphorescence Efficiencies of Blue-Emitting Platinum Complexes with Phenylene-Bridged Pincer Ligands.
    Song C; Tang J; Li J; Wang Z; Li P; Zhang H
    Inorg Chem; 2018 Oct; 57(19):12174-12186. PubMed ID: 30238751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-Temperature Phosphorescent Platinum(II) Alkynyls with Microsecond Lifetimes Bearing a Strong-Field Pincer Ligand.
    Liska T; Swetz A; Lai PN; Zeller M; Teets TS; Gray TG
    Chemistry; 2020 Jul; 26(38):8417-8425. PubMed ID: 32150648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the Efficiency of Phosphorescent Emitters: A Theoretical Analysis of Triplet States in Platinum Blue Emitters.
    Pinter P; Strassner T
    Chemistry; 2019 Mar; 25(16):4202-4205. PubMed ID: 30768739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Insights into the Photo-Deactivation of Emitting Triplet Excited State of (C^N)Pt(O^O) Complexes: Radiative and Nonradiative Decay Processes.
    Xu Y; Luo Y; Li M; He R; Shen W
    J Phys Chem A; 2016 Sep; 120(34):6813-21. PubMed ID: 27517617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emissive or nonemissive? A theoretical analysis of the phosphorescence efficiencies of cyclometalated platinum(II) complexes.
    Tong GS; Che CM
    Chemistry; 2009 Jul; 15(29):7225-37. PubMed ID: 19544517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activating Organic Phosphorescence via Heavy Metal-π Interaction Induced Intersystem Crossing.
    Sun MJ; Anhalt O; Sárosi MB; Stolte M; Würthner F
    Adv Mater; 2022 Dec; 34(51):e2207331. PubMed ID: 36210750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triplet excimer formation in platinum-based phosphors: a theoretical study of the roles of Pt-Pt bimetallic interactions and interligand pi-pi interactions.
    Kim D; Brédas JL
    J Am Chem Soc; 2009 Aug; 131(32):11371-80. PubMed ID: 19722650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Protocol to Calculate the Phosphorescence Energy of Pt(II) Complexes: Is the Lowest Triplet Excited State Always Involved in Emission? A Comprehensive Benchmark Study.
    Kumar P; Escudero D
    Inorg Chem; 2021 Nov; 60(22):17230-17240. PubMed ID: 34702026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From luminescence quenching to high-efficiency phosphorescence: a theoretical study on the monomeric and dimeric forms of platinum(II) complexes with both 2-pyridylimidazol-2-ylidene and bipyrazolate chelates.
    Zhang BH; Li JA; Wang M; Ren AM; He TF; Lin PP; Zhang YL; Xi XY; Zou LY
    Phys Chem Chem Phys; 2021 Mar; 23(9):5652-5664. PubMed ID: 33656501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes.
    Suzuri Y; Oshiyama T; Ito H; Hiyama K; Kita H
    Sci Technol Adv Mater; 2014 Oct; 15(5):054202. PubMed ID: 27877712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lighting the Flavin Decorated Ruthenium(II) Polyimine Complexes: A Theoretical Investigation.
    Guo H; Dang C; Zhao J; Dick B
    Inorg Chem; 2019 Jul; 58(13):8486-8493. PubMed ID: 31185537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-lived room temperature deep-red/near-IR emissive intraligand triplet excited state (3IL) of naphthalimide in cyclometalated platinum(II) complexes and its application in upconversion.
    Wu W; Guo H; Wu W; Ji S; Zhao J
    Inorg Chem; 2011 Nov; 50(22):11446-60. PubMed ID: 22029396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.