These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35666948)

  • 41. Hypomethylation of GRHL3 gene is associated with the occurrence of neural tube defects.
    Tian T; Wang L; Shen Y; Zhang B; Finnell RH; Ren A
    Epigenomics; 2018 Jul; 10(7):891-901. PubMed ID: 29587534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Abnormal epigenetic regulation of the gene expression levels of Wnt2b and Wnt7b: Implications for neural tube defects.
    Bai B; Chen S; Zhang Q; Jiang Q; Li H
    Mol Med Rep; 2016 Jan; 13(1):99-106. PubMed ID: 26548512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward understanding the genetic basis of neural tube defects.
    Kibar Z; Capra V; Gros P
    Clin Genet; 2007 Apr; 71(4):295-310. PubMed ID: 17470131
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current perspectives on the genetic causes of neural tube defects.
    De Marco P; Merello E; Mascelli S; Capra V
    Neurogenetics; 2006 Nov; 7(4):201-21. PubMed ID: 16941185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice.
    Harmacek L; Watkins-Chow DE; Chen J; Jones KL; Pavan WJ; Salbaum JM; Niswander L
    Dev Neurobiol; 2014 May; 74(5):483-97. PubMed ID: 24170322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic basis of neural tube defects. I. Regulatory genes for the neurulation process.
    Gos M; Szpecht-Potocka A
    J Appl Genet; 2002; 43(3):343-50. PubMed ID: 12177524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The emerging role of epigenetic mechanisms in the etiology of neural tube defects.
    Greene ND; Stanier P; Moore GE
    Epigenetics; 2011 Jul; 6(7):875-83. PubMed ID: 21613818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetics of neural tube defects.
    Gelineau-van Waes J; Finnell RH
    Semin Pediatr Neurol; 2001 Sep; 8(3):160-4. PubMed ID: 11575845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Network correlation analysis revealed potential new mechanisms for neural tube defects beyond folic acid.
    Gao X; Finnell RH; Wang H; Zheng Y
    Birth Defects Res; 2018 Jul; 110(12):982-993. PubMed ID: 29732722
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Analysis of co-segregation of methylation pattern and gene ontology among pedigrees affected with neural tube defects].
    Zhang R; Shu J; Zhao L; Cai C
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2019 Aug; 36(8):769-772. PubMed ID: 31400124
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects.
    Harris MJ; Juriloff DM
    Birth Defects Res A Clin Mol Teratol; 2007 Mar; 79(3):187-210. PubMed ID: 17177317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mini-review: toward understanding mechanisms of genetic neural tube defects in mice.
    Harris MJ; Juriloff DM
    Teratology; 1999 Nov; 60(5):292-305. PubMed ID: 10525207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Association between rare variants in specific functional pathways and human neural tube defects multiple subphenotypes.
    Zou J; Wang F; Yang X; Wang H; Niswander L; Zhang T; Li H
    Neural Dev; 2020 Jul; 15(1):8. PubMed ID: 32650820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptome profiling of genes involved in neural tube closure during human embryonic development using long serial analysis of gene expression (long-SAGE).
    Krupp DR; Xu PT; Thomas S; Dellinger A; Etchevers HC; Vekemans M; Gilbert JR; Speer MC; Ashley-Koch AE; Gregory SG;
    Birth Defects Res A Clin Mol Teratol; 2012 Sep; 94(9):683-92. PubMed ID: 22806986
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
    De Castro SCP; Hirst CS; Savery D; Rolo A; Lickert H; Andersen B; Copp AJ; Greene NDE
    Dev Biol; 2018 Mar; 435(2):130-137. PubMed ID: 29397878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects.
    Leduc RY; Singh P; McDermid HE
    Birth Defects Res; 2017 Jan; 109(2):140-152. PubMed ID: 27768235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expanding the mutational spectrum associated to neural tube defects: literature revision and description of novel VANGL1 mutations.
    Merello E; Mascelli S; Raso A; Piatelli G; Consales A; Cama A; Kibar Z; Capra V; Marco PD
    Birth Defects Res A Clin Mol Teratol; 2015 Jan; 103(1):51-61. PubMed ID: 25208524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-carbon metabolism and folate transporter genes: Do they factor prominently in the genetic etiology of neural tube defects?
    Steele JW; Kim SE; Finnell RH
    Biochimie; 2020 Jun; 173():27-32. PubMed ID: 32061804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Examining the Vanishing Twin Hypothesis of Neural Tube Defects: Application of an Epigenetic Predictor for Monozygotic Twinning.
    van Dongen J; Gordon SD; Odintsova VV; McRae AF; Robinson WP; Hall JG; Boomsma DI; Martin NG
    Twin Res Hum Genet; 2021 Jun; 24(3):155-159. PubMed ID: 34308812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.