BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35666993)

  • 1. Understanding the Electrochemical Performance of FeS
    Ashby DS; Horner JS; Whang G; Lapp AS; Roberts SA; Dunn B; Kolesnichenko IV; Lambert TN; Talin AA
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries.
    Zhao M; Peng HJ; Li BQ; Huang JQ
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38319810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of ion-electron conduction network on FeS
    Shen C; Liu Y; Shi Y; Liu X; Jiang Y; Huang S; Zhang J; Zhao B
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):85-93. PubMed ID: 37708735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing of Ridged FeS
    Cardenas JA; Bullivant JP; Kolesnichenko IV; Roach DJ; Gallegos MA; Coker EN; Lambert TN; Allcorn E; Talin AA; Cook AW; Harrison KL
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45342-45351. PubMed ID: 36191154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the Oxidation End-Product Toward Polysulfides-Free and Sustainable Lithium-Pyrite Thermal Batteries.
    Jin Y; Lu H; Lyu N; Zhang D; Jiang X; Sun B; Liu K; Wu H
    Adv Sci (Weinh); 2023 Feb; 10(6):e2205888. PubMed ID: 36603164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun MoS
    Wu S; Liu Q; Zhang W; Wu R; Tang H; Ma Y; Xu W; Jiang S
    Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Quasi-Solid-State Lithium-Sulfur Battery with a Controllably Solidified Cathode-Electrolyte Interface.
    Li CC; Wang WP; Feng XX; Wang YH; Zhang Y; Zhang J; Zhang L; Zheng JC; Luo Y; Chen Z; Xin S; Guo YG
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19066-19074. PubMed ID: 37036933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Feasibility of Practical Mg-S Batteries: Practical Limitations Associated with Metallic Magnesium Anodes.
    Salama M; Attias R; Hirsch B; Yemini R; Gofer Y; Noked M; Aurbach D
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36910-36917. PubMed ID: 30295459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur-Embedded FeS
    Mwizerwa JP; Zhang Q; Han F; Wan H; Cai L; Wang C; Yao X
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18519-18525. PubMed ID: 32216290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.
    Yang C; Suo L; Borodin O; Wang F; Sun W; Gao T; Fan X; Hou S; Ma Z; Amine K; Xu K; Wang C
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6197-6202. PubMed ID: 28566497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Cycle-Life Calcium Battery with a High-Capacity Conversion Cathode Enabled by a Ca
    Meng Z; Reupert A; Tang Y; Li Z; Karkera G; Wang L; Roy A; Diemant T; Fichtner M; Zhao-Karger Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54616-54622. PubMed ID: 36464849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pyrite Iron Disulfide Cathode with a Copper Current Collector for High-Energy Reversible Magnesium-Ion Storage.
    Shen Y; Zhang Q; Wang Y; Gu L; Zhao X; Shen X
    Adv Mater; 2021 Oct; 33(41):e2103881. PubMed ID: 34436798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cathode-Integrated Sulfur-Deficient Co
    Lin H; Zhang S; Zhang T; Cao S; Ye H; Yao Q; Zheng GW; Lee JY
    ACS Nano; 2019 Jun; 13(6):7073-7082. PubMed ID: 31184138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Activation of Fe-LiF Conversion Cathodes in Thin-Film Solid-State Batteries.
    Casella J; Morzy J; Gilshtein E; Yarema M; Futscher MH; Romanyuk YE
    ACS Nano; 2024 Feb; 18(5):4352-4359. PubMed ID: 38284312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium-Sulfur Batteries.
    Zhao H; Tian B; Su C; Li Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7171-7177. PubMed ID: 33528984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.