BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35666993)

  • 21. Oxygen Vacancies in Bismuth Tantalum Oxide to Anchor Polysulfide and Accelerate the Sulfur Evolution Reaction in Lithium-Sulfur Batteries.
    Wang C; Lu JH; Wang AB; Zhang H; Wang WK; Jin ZQ; Fan LZ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Li-S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode.
    Ma L; Zhuang HL; Wei S; Hendrickson KE; Kim MS; Cohn G; Hennig RG; Archer LA
    ACS Nano; 2016 Jan; 10(1):1050-9. PubMed ID: 26634409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First-row transition metal carbide nanosheets as high-performance cathode materials for lithium-sulfur batteries.
    Muhammad I; Ahmed S; Yao Z; Khan D; Hussain T; Wang YG
    Nanoscale; 2023 Dec; 16(1):262-272. PubMed ID: 38054842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FeS
    Cao X; Zhang Y; Luo C; Yin Y; Huang Y
    Front Chem; 2022; 10():957462. PubMed ID: 35910740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inorganic Polysulfide Chemistries for Better Energy Storage Systems.
    Li X; Sun X; Xiao B; Wang D; Liang J
    Acc Chem Res; 2023 Dec; 56(24):3547-3557. PubMed ID: 38060813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An interwoven carbon nanotubes/cerium dioxide electrocatalyst accelerating the conversion kinetics of lithium sulfide toward high-performance lithium-sulfur batteries.
    Wen G; Shi Z; Sui Y; Wang B; Zhang X; Zhang Z; Wu L
    J Colloid Interface Sci; 2022 Oct; 623():697-702. PubMed ID: 35653854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective.
    Zhao-Karger Z; Fichtner M
    Front Chem; 2018; 6():656. PubMed ID: 30697538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the Extent of Polysulfide Confinement Using a CoNi
    Bhardwaj RK; Jayanthi S; Adarakatti PS; Sood AK; Bhattacharyya AJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28120-28128. PubMed ID: 32436690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Iron Sulfide Nanoparticle Sizes in Solid-State Batteries*.
    Dewald GF; Liaqat Z; Lange MA; Tremel W; Zeier WG
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):17952-17956. PubMed ID: 34129261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfur encapsulated in thermally reduced graphite oxide as a cathode for Li-S batteries.
    Xu X; Ruan J; Pang Y; Yuan T; Zheng S
    RSC Adv; 2018 Jan; 8(10):5298-5305. PubMed ID: 35542438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators for Lithium-Sulfur Batteries.
    Qian J; Xing Y; Yang Y; Li Y; Yu K; Li W; Zhao T; Ye Y; Li L; Wu F; Chen R
    Adv Mater; 2021 Jun; 33(25):e2100810. PubMed ID: 33987896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li-S Batteries.
    Ye H; Sun J; Zhang S; Lin H; Zhang T; Yao Q; Lee JY
    ACS Nano; 2019 Dec; 13(12):14208-14216. PubMed ID: 31790591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries.
    Xu X; Liu J; Liu Z; Shen J; Hu R; Liu J; Ouyang L; Zhang L; Zhu M
    ACS Nano; 2017 Sep; 11(9):9033-9040. PubMed ID: 28813140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast Polysulfide Conversion Catalysis and Reversible Anode Operation by A Single Cathode Modifier in Li-Metal Anode-Free Lithium-Sulfur Batteries.
    Zhao Y; Huang L; Zhao D; Yang Lee J
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202308976. PubMed ID: 37475640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries.
    Choi S; Su D; Shin M; Park S; Wang G
    Chem Asian J; 2018 Mar; 13(5):568-576. PubMed ID: 29333699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Sulfur Transformation by Multifunctional FeS
    Xi K; He D; Harris C; Wang Y; Lai C; Li H; Coxon PR; Ding S; Wang C; Kumar RV
    Adv Sci (Weinh); 2019 Mar; 6(6):1800815. PubMed ID: 30937253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlating Polysulfide Solvation Structure with Electrode Kinetics towards Long-Cycling Lithium-Sulfur Batteries.
    Li Z; Hou LP; Yao N; Li XY; Chen ZX; Chen X; Zhang XQ; Li BQ; Zhang Q
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202309968. PubMed ID: 37664907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.