These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35667141)

  • 1. Mapping of Protein Binding Sites using clustering algorithms - Development of a pharmacophore based drug discovery tool.
    Braun J; Fayne D
    J Mol Graph Model; 2022 Sep; 115():108228. PubMed ID: 35667141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery.
    Yamaotsu N; Hirono S
    J Comput Aided Mol Des; 2018 Nov; 32(11):1229-1245. PubMed ID: 30196523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.
    Meslamani J; Li J; Sutter J; Stevens A; Bertrand HO; Rognan D
    J Chem Inf Model; 2012 Apr; 52(4):943-55. PubMed ID: 22480372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the NF-κB/IκBα complex via fragment-based E-Pharmacophore virtual screening and binary QSAR models.
    Kanan T; Kanan D; Erol I; Yazdi S; Stein M; Durdagi S
    J Mol Graph Model; 2019 Jan; 86():264-277. PubMed ID: 30415122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking.
    Hu B; Lill MA
    J Chem Inf Model; 2013 May; 53(5):1179-90. PubMed ID: 23621564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches.
    Jana S; Singh SK
    J Biomol Struct Dyn; 2019 Mar; 37(4):944-965. PubMed ID: 29475408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites.
    Khan O; Jones G; Lazou M; Joseph-McCarthy D; Kozakov D; Beglov D; Vajda S
    J Chem Inf Model; 2024 Mar; 64(6):2084-2100. PubMed ID: 38456842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of purely structure-based pharmacophores for the topoisomerase I-DNA-ligand binding pocket.
    Drwal MN; Agama K; Pommier Y; Griffith R
    J Comput Aided Mol Des; 2013 Dec; 27(12):1037-49. PubMed ID: 24293134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacophore modelling as a virtual screening tool for the discovery of small molecule protein-protein interaction inhibitors.
    Voet A; Zhang KY
    Curr Pharm Des; 2012; 18(30):4586-98. PubMed ID: 22650262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the value of homology models for virtual screening: discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches.
    Huang D; Gu Q; Ge H; Ye J; Salam NK; Hagler A; Chen H; Xu J
    J Chem Inf Model; 2012 May; 52(5):1356-66. PubMed ID: 22545675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein pharmacophore selection using hydration-site analysis.
    Hu B; Lill MA
    J Chem Inf Model; 2012 Apr; 52(4):1046-60. PubMed ID: 22397751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining spatial and chemical information for clustering pharmacophores.
    Zhou L; Griffith R; Gaeta B
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S5. PubMed ID: 25521061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation.
    Loving K; Salam NK; Sherman W
    J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Graph Representation of Pharmacophore Models.
    Arthur G; Oliver W; Klaus B; Thomas S; Gökhan I; Sharon B; Isabelle T; Pierre D; Thierry L
    Front Mol Biosci; 2020; 7():599059. PubMed ID: 33425991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application.
    Baroni M; Cruciani G; Sciabola S; Perruccio F; Mason JS
    J Chem Inf Model; 2007; 47(2):279-94. PubMed ID: 17381166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI-based prediction of new binding site and virtual screening for the discovery of novel P2X3 receptor antagonists.
    Kang KM; Lee I; Nam H; Kim YC
    Eur J Med Chem; 2022 Oct; 240():114556. PubMed ID: 35849939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations.
    Polishchuk P; Kutlushina A; Bashirova D; Mokshyna O; Madzhidov T
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31757043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AutoPH4: An Automated Method for Generating Pharmacophore Models from Protein Binding Pockets.
    Jiang S; Feher M; Williams C; Cole B; Shaw DE
    J Chem Inf Model; 2020 Sep; 60(9):4326-4338. PubMed ID: 32639159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.