BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35667299)

  • 1. Integrating multiple sequence features for identifying anticancer peptides.
    Zou H; Yang F; Yin Z
    Comput Biol Chem; 2022 Aug; 99():107711. PubMed ID: 35667299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iTTCA-MFF: identifying tumor T cell antigens based on multiple feature fusion.
    Zou H; Yang F; Yin Z
    Immunogenetics; 2022 Oct; 74(5):447-454. PubMed ID: 35246701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of tumor homing peptides by utilizing hybrid feature representation.
    Zou H; Yang F; Yin Z
    J Biomol Struct Dyn; 2023 May; 41(8):3405-3412. PubMed ID: 35262448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iAMY-RECMFF: Identifying amyloidgenic peptides by using residue pairwise energy content matrix and features fusion algorithm.
    Yu Z; Yin Z; Zou H
    J Bioinform Comput Biol; 2023 Oct; 21(5):2350023. PubMed ID: 37899353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iDPPIV-SI: identifying dipeptidyl peptidase IV inhibitory peptides by using multiple sequence information.
    Zou H
    J Biomol Struct Dyn; 2024; 42(4):2144-2152. PubMed ID: 37125813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. m7G-DPP: Identifying N7-methylguanosine sites based on dinucleotide physicochemical properties of RNA.
    Zou H; Yin Z
    Biophys Chem; 2021 Dec; 279():106697. PubMed ID: 34628276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iDHS-DT: Identifying DNase I hypersensitive sites by integrating DNA dinucleotide and trinucleotide information.
    Zou H; Yang F; Yin Z
    Biophys Chem; 2022 Feb; 281():106717. PubMed ID: 34798459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective identification and differential analysis of anticancer peptides.
    Zhang L; Hu X; Xiao K; Kong L
    Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying N7-methylguanosine sites by integrating multiple features.
    Zou H; Yang F; Yin Z
    Biopolymers; 2022 Feb; 113(2):e23480. PubMed ID: 34709657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iRNA5hmC-HOC: High-order correlation information for identifying RNA 5-hydroxymethylcytosine modification.
    Zou H
    J Bioinform Comput Biol; 2022 Aug; 20(4):2250017. PubMed ID: 35918795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides.
    Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A
    Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating temporal and spatial variabilities for identifying ion binding proteins in phage.
    Zou H; Yu Z; Yin Z
    J Bioinform Comput Biol; 2023 Jun; 21(3):2350010. PubMed ID: 37325864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating Low-Order and High-Order Correlation Information for Identifying Phage Virion Proteins.
    Zou H; Yu W
    J Comput Biol; 2023 Oct; 30(10):1131-1143. PubMed ID: 37729064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iACP-GE: accurate identification of anticancer peptides by using gradient boosting decision tree and extra tree.
    Liang Y; Ma X
    SAR QSAR Environ Res; 2023 Jan; 34(1):1-19. PubMed ID: 36562289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides.
    Wan Y; Wang Z; Lee TY
    BMC Bioinformatics; 2021 May; 22(1):286. PubMed ID: 34051755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DRACP: a novel method for identification of anticancer peptides.
    Zhao T; Hu Y; Zang T
    BMC Bioinformatics; 2020 Dec; 21(Suppl 16):559. PubMed ID: 33323099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides.
    Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q
    Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACP_MS: prediction of anticancer peptides based on feature extraction.
    Zhou C; Peng D; Liao B; Jia R; Wu F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACP-ADA: A Boosting Method with Data Augmentation for Improved Prediction of Anticancer Peptides.
    Bhattarai S; Kim KS; Tayara H; Chong KT
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.