These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 35667368)
1. Development of ripple filter composed of metal mesh for charged-particle therapy. Tanaka S; Inaniwa T; Matsuba S Phys Med Biol; 2022 Jun; 67(13):. PubMed ID: 35667368 [No Abstract] [Full Text] [Related]
2. Method for fabricating a mesh ripple filter for charged-particle therapy. Tanaka S; Inaniwa T Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38941999 [No Abstract] [Full Text] [Related]
3. Application of lung substitute material as ripple filter for multi-ion therapy with helium-, carbon-, oxygen-, and neon-ion beams. Inaniwa T; Abe Y; Suzuki M; Lee SH; Mizushima K; Nakaji T; Sakata D; Sato S; Iwata Y; Kanematsu N; Shirai T Phys Med Biol; 2021 Feb; 66(5):. PubMed ID: 33477116 [TBL] [Abstract][Full Text] [Related]
4. Fluence inhomogeneities due to a ripple filter induced Moiré effect. Ringbæk TP; Brons S; Naumann J; Ackermann B; Horn J; Latzel H; Scheloske S; Galonska M; Bassler N; Zink K; Weber U Phys Med Biol; 2015 Feb; 60(3):N59-69. PubMed ID: 25590354 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulations of new 2D ripple filters for particle therapy facilities. Ringbæk TP; Weber U; Petersen JB; Thomsen B; Bassler N Acta Oncol; 2014 Jan; 53(1):40-9. PubMed ID: 24050575 [TBL] [Abstract][Full Text] [Related]
6. Validation of new 2D ripple filters in proton treatments of spherical geometries and non-small cell lung carcinoma cases. Ringbæk TP; Weber U; Santiago A; Iancu G; Wittig A; Grzanka L; Bassler N; Engenhart-Cabillic R; Zink K Phys Med Biol; 2018 Dec; 63(24):245020. PubMed ID: 30523868 [TBL] [Abstract][Full Text] [Related]
7. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses. Ringbæk TP; Weber U; Santiago A; Simeonov Y; Fritz P; Krämer M; Wittig A; Bassler N; Engenhart-Cabillic R; Zink K Phys Med Biol; 2016 Jun; 61(11):4327-41. PubMed ID: 27203127 [TBL] [Abstract][Full Text] [Related]
8. Development of porous structure for broadening Bragg-peak in scanning carbon-ion radiotherapy: Monte Carlo simulation and experimental validation. Dong S; Sun J; Ming X; Weber U; Schuy C; Hu W; Sheng Y Phys Med; 2024 Apr; 120():103325. PubMed ID: 38493583 [TBL] [Abstract][Full Text] [Related]
9. A simple method to import CAD mesh format models in FLUKA. Dong S; Sheng Y; Wang J; Hu W J Appl Clin Med Phys; 2023 Nov; 24(11):e14107. PubMed ID: 37563859 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy. Grevillot L; Stock M; Vatnitsky S Phys Med Biol; 2015 Oct; 60(20):7985-8005. PubMed ID: 26418366 [TBL] [Abstract][Full Text] [Related]
11. Modulation power of porous materials and usage as ripple filter in particle therapy. Printz Ringbæk T; Simeonov Y; Witt M; Engenhart-Cabillic R; Kraft G; Zink K; Weber U Phys Med Biol; 2017 Apr; 62(7):2892-2909. PubMed ID: 28140381 [TBL] [Abstract][Full Text] [Related]
12. Design and construction of a ripple filter for a smoothed depth dose distribution in conformal particle therapy. Weber U; Kraft G Phys Med Biol; 1999 Nov; 44(11):2765-75. PubMed ID: 10588283 [TBL] [Abstract][Full Text] [Related]
13. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Tessonnier T; Mairani A; Brons S; Sala P; Cerutti F; Ferrari A; Haberer T; Debus J; Parodi K Phys Med Biol; 2017 Aug; 62(16):6784-6803. PubMed ID: 28762335 [TBL] [Abstract][Full Text] [Related]
14. Improvement of spread-out Bragg peak flatness for a carbon-ion beam by the use of a ridge filter with a ripple filter. Hara Y; Takada Y; Hotta K; Tansho R; Nihei T; Suzuki Y; Nagafuchi K; Kawai R; Tanabe M; Mizutani S; Himukai T; Matsufuji N Phys Med Biol; 2012 Mar; 57(6):1717-31. PubMed ID: 22398392 [TBL] [Abstract][Full Text] [Related]
15. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619 [TBL] [Abstract][Full Text] [Related]
16. Quality assurance method for monitoring of lateral pencil beam positions in scanned carbon-ion radiotherapy using tracking of secondary ions. Félix-Bautista R; Ghesquière-Diérickx L; Marek L; Granja C; Soukup P; Turecek D; Kelleter L; Brons S; Ellerbrock M; Jäkel O; Gehrke T; Martišíková M Med Phys; 2021 Aug; 48(8):4411-4424. PubMed ID: 34061994 [TBL] [Abstract][Full Text] [Related]
17. Design of ridge filters for spread-out Bragg peaks with Monte Carlo simulation in carbon ion therapy. Sakama M; Kanai T; Kase Y; Yusa K; Tashiro M; Torikai K; Shimada H; Yamada S; Ohno T; Nakano T Phys Med Biol; 2012 Oct; 57(20):6615-33. PubMed ID: 23022653 [TBL] [Abstract][Full Text] [Related]
18. Experimental dosimetric comparison of Tessonnier T; Mairani A; Brons S; Haberer T; Debus J; Parodi K Phys Med Biol; 2017 May; 62(10):3958-3982. PubMed ID: 28406796 [TBL] [Abstract][Full Text] [Related]
19. Multi-layer energy filter for realizing conformal irradiation in charged particle therapy. Sakae T; Nohtomi A; Maruhashi A; Sato M; Terunuma T; Kohno R; Akine Y; Hayakawa Y; Koike Y Med Phys; 2000 Feb; 27(2):368-73. PubMed ID: 10718141 [TBL] [Abstract][Full Text] [Related]
20. A GEMPix-based integrated system for measurements of 3D dose distributions in water for carbon ion scanning beam radiotherapy. Leidner J; Ciocca M; Mairani A; Murtas F; Silari M Med Phys; 2020 Jun; 47(6):2516-2525. PubMed ID: 32135033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]