BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

937 related articles for article (PubMed ID: 35667465)

  • 1. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment.
    Zhang J; Tavakoli H; Ma L; Li X; Han L; Li X
    Adv Drug Deliv Rev; 2022 Aug; 187():114365. PubMed ID: 35667465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment.
    Kumar V; Varghese S
    Adv Healthc Mater; 2019 Feb; 8(4):e1801198. PubMed ID: 30516355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-Engineered Organoid-on-a-Chip Based on Mesenchymal Stromal Cells to Predict Immunotherapy Responses of HCC Patients.
    Zou Z; Lin Z; Wu C; Tan J; Zhang J; Peng Y; Zhang K; Li J; Wu M; Zhang Y
    Adv Sci (Weinh); 2023 Sep; 10(27):e2302640. PubMed ID: 37485650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-on-a-chip platforms to study cancer-immune system crosstalk in the era of immunotherapy.
    Parlato S; Grisanti G; Sinibaldi G; Peruzzi G; Casciola CM; Gabriele L
    Lab Chip; 2021 Jan; 21(2):234-253. PubMed ID: 33315027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organoid Models for Precision Cancer Immunotherapy.
    Sun CP; Lan HR; Fang XL; Yang XY; Jin KT
    Front Immunol; 2022; 13():770465. PubMed ID: 35450073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breast cancer organoids and their applications for precision cancer immunotherapy.
    Guan D; Liu X; Shi Q; He B; Zheng C; Meng X
    World J Surg Oncol; 2023 Oct; 21(1):343. PubMed ID: 37884976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preclinical tumor organoid models in personalized cancer therapy: Not everyone fits the mold.
    Hu LF; Yang X; Lan HR; Fang XL; Chen XY; Jin KT
    Exp Cell Res; 2021 Nov; 408(2):112858. PubMed ID: 34600901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organ-on-Chip platforms to study tumor evolution and chemosensitivity.
    Dsouza VL; Kuthethur R; Kabekkodu SP; Chakrabarty S
    Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188717. PubMed ID: 35304293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models.
    Ringquist R; Ghoshal D; Jain R; Roy K
    Adv Drug Deliv Rev; 2021 Dec; 179():114003. PubMed ID: 34653533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D cancer models: One step closer to
    Manduca N; Maccafeo E; De Maria R; Sistigu A; Musella M
    Front Immunol; 2023; 14():1175503. PubMed ID: 37114038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Tumor Models and Their Use for the Testing of Immunotherapies.
    Boucherit N; Gorvel L; Olive D
    Front Immunol; 2020; 11():603640. PubMed ID: 33362787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment.
    Ravi K; Manoharan TJM; Wang KC; Pockaj B; Nikkhah M
    Biomaterials; 2024 Mar; 305():122428. PubMed ID: 38147743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-Derived Tumor Organoids: New Progress and Opportunities to Facilitate Precision Cancer Immunotherapy.
    Wang J; Chen C; Wang L; Xie M; Ge X; Wu S; He Y; Mou X; Ye C; Sun Y
    Front Oncol; 2022; 12():872531. PubMed ID: 35449581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging organoid-immune co-culture models for cancer research: from oncoimmunology to personalized immunotherapies.
    Magré L; Verstegen MMA; Buschow S; van der Laan LJW; Peppelenbosch M; Desai J
    J Immunother Cancer; 2023 May; 11(5):. PubMed ID: 37220953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organoid Models of Tumor Immunology.
    Yuki K; Cheng N; Nakano M; Kuo CJ
    Trends Immunol; 2020 Aug; 41(8):652-664. PubMed ID: 32654925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing the tumor architecture into organoids.
    Luo Z; Zhou X; Mandal K; He N; Wennerberg W; Qu M; Jiang X; Sun W; Khademhosseini A
    Adv Drug Deliv Rev; 2021 Sep; 176():113839. PubMed ID: 34153370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip recapitulation of the tumor microenvironment: A decade of progress.
    Giannitelli SM; Peluzzi V; Raniolo S; Roscilli G; Trombetta M; Mozetic P; Rainer A
    Biomaterials; 2024 Apr; 306():122482. PubMed ID: 38301325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology.
    Xie H; Appelt JW; Jenkins RW
    Cancers (Basel); 2021 Dec; 13(23):. PubMed ID: 34885161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Biomimetic Models to Reconstitute Tumor Microenvironment In Vitro: Spheroids, Organoids, and Tumor-on-a-Chip.
    Li W; Zhou Z; Zhou X; Khoo BL; Gunawan R; Chin YR; Zhang L; Yi C; Guan X; Yang M
    Adv Healthc Mater; 2023 Jul; 12(18):e2202609. PubMed ID: 36917657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices.
    Kundu B; Caballero D; Abreu CM; Reis RL; Kundu SC
    Adv Exp Med Biol; 2022; 1379():115-138. PubMed ID: 35760990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.