These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 35667537)

  • 1. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: Recent advances.
    Mastropetros SG; Pispas K; Zagklis D; Ali SS; Kornaros M
    Biotechnol Adv; 2022 Nov; 60():107999. PubMed ID: 35667537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae as source of polyhydroxyalkanoates (PHAs) - A review.
    Costa SS; Miranda AL; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2019 Jun; 131():536-547. PubMed ID: 30885732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgae as Contributors to Produce Biopolymers.
    Madadi R; Maljaee H; Serafim LS; Ventura SPM
    Mar Drugs; 2021 Aug; 19(8):. PubMed ID: 34436305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algal-based bioplastics: global trends in applied research, technologies, and commercialization.
    Mogany T; Bhola V; Bux F
    Environ Sci Pollut Res Int; 2024 Jun; 31(26):38022-38044. PubMed ID: 38787471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of polymers by cyanobacteria grown in wastewater: Current status, challenges and future perspectives.
    Arias DM; García J; Uggetti E
    N Biotechnol; 2020 Mar; 55():46-57. PubMed ID: 31541716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives.
    Andreeßen C; Steinbüchel A
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):143-157. PubMed ID: 30397765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation.
    López-Pacheco IY; Rodas-Zuluaga LI; Cuellar-Bermudez SP; Hidalgo-Vázquez E; Molina-Vazquez A; Araújo RG; Martínez-Ruiz M; Varjani S; Barceló D; Iqbal HMN; Parra-Saldívar R
    Mar Drugs; 2022 Sep; 20(10):. PubMed ID: 36286425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment.
    Ali Z; Abdullah M; Yasin MT; Amanat K; Ahmad K; Ahmed I; Qaisrani MM; Khan J
    Environ Res; 2024 Mar; 244():117949. PubMed ID: 38109961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy.
    Aswathi Mohan A; Robert Antony A; Greeshma K; Yun JH; Ramanan R; Kim HS
    Bioresour Technol; 2022 Jan; 344(Pt B):126397. PubMed ID: 34822992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.
    Kumar A; Srivastava JK; Mallick N; Singh AK
    Recent Pat Biotechnol; 2015; 9(1):4-21. PubMed ID: 26073514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria.
    Wagner J; Bransgrove R; Beacham TA; Allen MJ; Meixner K; Drosg B; Ting VP; Chuck CJ
    Bioresour Technol; 2016 May; 207():166-74. PubMed ID: 26881334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater.
    Amadu AA; Qiu S; Ge S; Addico GND; Ameka GK; Yu Z; Xia W; Abbew AW; Shao D; Champagne P; Wang S
    Sci Total Environ; 2021 Feb; 756():143729. PubMed ID: 33310224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles.
    Ding Z; Kumar V; Sar T; Harirchi S; Dregulo AM; Sirohi R; Sindhu R; Binod P; Liu X; Zhang Z; Taherzadeh MJ; Awasthi MK
    Bioresour Technol; 2022 Nov; 364():128058. PubMed ID: 36191751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgae in Bioplastic Production: A Comprehensive Review.
    Arora Y; Sharma S; Sharma V
    Arab J Sci Eng; 2023; 48(6):7225-7241. PubMed ID: 37266400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyhydroxybutyrate production from marine source and its application.
    Kavitha G; Rengasamy R; Inbakandan D
    Int J Biol Macromol; 2018 May; 111():102-108. PubMed ID: 29292139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater.
    Grivalský T; Lakatos GE; Štěrbová K; Manoel JAC; Beloša R; Divoká P; Kopp J; Kriechbaum R; Spadiut O; Zwirzitz A; Trenzinger K; Masojídek J
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):44. PubMed ID: 38180554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature's fight against plastic pollution: Algae for plastic biodegradation and bioplastics production.
    Chia WY; Ying Tang DY; Khoo KS; Kay Lup AN; Chew KW
    Environ Sci Ecotechnol; 2020 Oct; 4():100065. PubMed ID: 36157709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution.
    Acharjee SA; Bharali P; Gogoi B; Sorhie V; Walling B; Alemtoshi
    Water Air Soil Pollut; 2023; 234(1):21. PubMed ID: 36593989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation.
    Ma R; Li J; Tyagi RD; Zhang X
    Bioresour Technol; 2024 Jan; 391(Pt A):129977. PubMed ID: 37925086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of wastewater microalgae harvesting methods on polyhydroxybutyrate production.
    Rahman A; Anthony RJ; Sathish A; Sims RC; Miller CD
    Bioresour Technol; 2014 Mar; 156():364-7. PubMed ID: 24491426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.