BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35667631)

  • 21. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Through-vial impedance spectroscopy of critical events during the freezing stage of the lyophilization cycle: the example of the impact of sucrose on the crystallization of mannitol.
    Arshad MS; Smith G; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2014 Aug; 87(3):598-605. PubMed ID: 24825125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of subambient differential scanning calorimetry to monitor the frozen-state behavior of blends of excipients for freeze-drying.
    Martini A; Kume S; Crivellente M; Artico R
    PDA J Pharm Sci Technol; 1997; 51(2):62-7. PubMed ID: 9146035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mannitol-sucrose mixtures--versatile formulations for protein lyophilization.
    Johnson RE; Kirchhoff CF; Gaud HT
    J Pharm Sci; 2002 Apr; 91(4):914-22. PubMed ID: 11948529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formulation, process, and storage strategies for lyophilizates of lipophilic nanoparticulate systems established based on the two models paliperidone palmitate and solid lipid nanoparticles.
    Trenkenschuh E; Savšek U; Friess W
    Int J Pharm; 2021 Sep; 606():120929. PubMed ID: 34303819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying.
    Shalaev EY; Johnson-Elton TD; Chang L; Pikal MJ
    Pharm Res; 2002 Feb; 19(2):195-201. PubMed ID: 11883647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of buffer systems and disaccharides concentration on Podoviridae coliphage stability during freeze drying and storage.
    Dini C; de Urraza PJ
    Cryobiology; 2013 Jun; 66(3):339-42. PubMed ID: 23537872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Carpenter JF
    J Pharm Sci; 2001 Sep; 90(9):1255-68. PubMed ID: 11745778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freeze-thaw stability of aluminum oxide nanoparticles.
    Trenkenschuh E; Friess W
    Int J Pharm; 2021 Sep; 606():120932. PubMed ID: 34310956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.
    Hauptmann A; Podgoršek K; Kuzman D; Srčič S; Hoelzl G; Loerting T
    Pharm Res; 2018 Mar; 35(5):101. PubMed ID: 29556730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.
    Pikal-Cleland KA; Cleland JL; Anchordoquy TJ; Carpenter JF
    J Pharm Sci; 2002 Sep; 91(9):1969-79. PubMed ID: 12210044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Freezing-induced protein aggregation - Role of pH shift and potential mitigation strategies.
    Thorat AA; Munjal B; Geders TW; Suryanarayanan R
    J Control Release; 2020 Jul; 323():591-599. PubMed ID: 32335158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lyophilization of a triply unsaturated phospholipid: effects of trace metal contaminants.
    Payton NM; Wempe MF; Betker JL; Randolph TW; Anchordoquy TJ
    Eur J Pharm Biopharm; 2013 Oct; 85(2):306-13. PubMed ID: 23567484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.
    Sundaramurthi P; Suryanarayanan R
    J Phys Chem B; 2011 Jun; 115(21):7154-64. PubMed ID: 21561117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Influence of Arginine and Counter-Ions: Antibody Stability during Freeze-Drying.
    Seifert I; Bregolin A; Fissore D; Friess W
    J Pharm Sci; 2021 May; 110(5):2017-2027. PubMed ID: 33316241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the physical stability of freeze-dried sucrose-containing formulations by differential scanning calorimetry.
    te Booy MP; de Ruiter RA; de Meere AL
    Pharm Res; 1992 Jan; 9(1):109-14. PubMed ID: 1589394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of residual moisture on a monoclonal antibody stability in L-arginine based lyophilisates.
    Seifert I; Friess W
    Eur J Pharm Biopharm; 2021 Jan; 158():53-61. PubMed ID: 33188928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.