BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3566770)

  • 1. Stabilization of ascorbate solution by chelating agents that block redox cycling of metal ions.
    Nishikimi M; Ozawa T
    Biochem Int; 1987 Jan; 14(1):111-7. PubMed ID: 3566770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of metals and their antagonists on the radical intensity and cytotoxicity of ascorbates.
    Satoh K; Ida Y; Kochi M; Tajima M; Kashimata M; Sakagami H
    Anticancer Res; 1997; 17(5A):3355-60. PubMed ID: 9413172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chelating effect of human serum proteins on metal-catalyzed ascorbate radical generation.
    Satoh K; Ida Y; Kimura S; Taguchi K; Numaguchi M; Gomi K; Kochi M; Sakagami H
    Anticancer Res; 1997; 17(6D):4377-80. PubMed ID: 9494536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of citrinin on iron-redox cycle.
    Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG
    Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic metals, ascorbate and free radicals: combinations to avoid.
    Buettner GR; Jurkiewicz BA
    Radiat Res; 1996 May; 145(5):532-41. PubMed ID: 8619018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacity of reductants and chelators to prevent lipid oxidation catalyzed by fish hemoglobin.
    Maestre R; Pazos M; Iglesias J; Medina I
    J Agric Food Chem; 2009 Oct; 57(19):9190-6. PubMed ID: 19736927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of metal chelating agents on the oxidation of lipids induced by copper and iron.
    Yoshida Y; Furuta S; Niki E
    Biochim Biophys Acta; 1993 Dec; 1210(1):81-8. PubMed ID: 8257723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of copper-catalyzed cysteine oxidation by nanomolar concentrations of iron salts.
    Munday R; Munday CM; Winterbourn CC
    Free Radic Biol Med; 2004 Mar; 36(6):757-64. PubMed ID: 14990354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inhibitory effects of serotonin and sodium ascorbate on the oxidative aggregation of lipoproteins].
    Petrenko IuM; Titov VIu; Vladimirov IuA
    Eksp Klin Farmakol; 2000; 63(3):45-51. PubMed ID: 10934596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical.
    Dikalov SI; Vitek MP; Mason RP
    Free Radic Biol Med; 2004 Feb; 36(3):340-7. PubMed ID: 15036353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction.
    Kazakov SA; Astashkina TG; Mamaev SV; Vlassov VV
    Nature; 1988 Sep; 335(6186):186-8. PubMed ID: 3412475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfite oxidation by iron-grown cells of Thiobacillus ferrooxidans at pH 3 possibly involves free radicals, iron, and cytochrome oxidase.
    Harahuc L; Suzuki I
    Can J Microbiol; 2001 May; 47(5):424-30. PubMed ID: 11400733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations.
    Caro AA; Cederbaum AI
    Free Radic Biol Med; 2004 May; 36(10):1303-16. PubMed ID: 15110395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dihydrolipoic acid lowers the redox activity of transition metal ions but does not remove them from the active site of enzymes.
    Suh JH; Zhu BZ; deSzoeke E; Frei B; Hagen TM
    Redox Rep; 2004; 9(1):57-61. PubMed ID: 15035828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of metal ions on the transport of ascorbate across membranes.
    Lohmann W; Tian PZ; Holz D; Schmehl W
    Int J Vitam Nutr Res; 1986; 56(2):169-72. PubMed ID: 3015816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.