These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3566770)

  • 21. Effects of iron, copper, cobalt, and their chelators on the cytotoxicity of bleomycin.
    Lin PS; Kwock L; Hefter K; Misslbeck G
    Cancer Res; 1983 Mar; 43(3):1049-53. PubMed ID: 6186368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation.
    Laranjinha J; Cadenas E
    IUBMB Life; 1999 Jul; 48(1):57-65. PubMed ID: 10791916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione.
    Milne L; Nicotera P; Orrenius S; Burkitt MJ
    Arch Biochem Biophys; 1993 Jul; 304(1):102-9. PubMed ID: 8323275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper modifies liver microsomal UDP-glucuronyltransferase activity through different and opposite mechanisms.
    Letelier ME; Lagos F; Faúndez M; Miranda D; Montoya M; Aracena-Parks P; González-Lira V
    Chem Biol Interact; 2007 Apr; 167(1):1-11. PubMed ID: 17274970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adventitious redox-active metals in Krebs-Henseleit buffer can contribute to Langendorff heart experimental results.
    Powell SR; Wapnir RA
    J Mol Cell Cardiol; 1994 Jun; 26(6):769-78. PubMed ID: 8089856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-oxidant mechanisms of kolaviron: studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats.
    Farombi EO; Nwaokeafor IA
    Clin Exp Pharmacol Physiol; 2005 Aug; 32(8):667-74. PubMed ID: 16120195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper-catalyzed ascorbate oxidation results in glyoxal/AGE formation and cytotoxicity.
    Shangari N; Chan TS; Chan K; Huai Wu S; O'Brien PJ
    Mol Nutr Food Res; 2007 Apr; 51(4):445-55. PubMed ID: 17390397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ascorbate-induced high-affinity binding of copper to cytosolic proteins.
    Ohta Y; Shiraishi N; Inai Y; Lee IS; Iwahashi H; Nishikimi M
    Biochem Biophys Res Commun; 2001 Oct; 287(4):888-94. PubMed ID: 11573948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-catalyzed oxidation reactions and mass spectrometry: the roles of ascorbate and different oxidizing agents in determining Cu-protein-binding sites.
    Bridgewater JD; Vachet RW
    Anal Biochem; 2005 Jun; 341(1):122-30. PubMed ID: 15866536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron.
    Randell EW; Parkes JG; Olivieri NF; Templeton DM
    J Biol Chem; 1994 Jun; 269(23):16046-53. PubMed ID: 8206903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of a copper-chelating peptide on the anticancer activity of anthraquinones].
    Morier-Teissier E
    J Pharm Belg; 1990; 45(6):347-54. PubMed ID: 2086758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ascorbate autoxidation in the presence of iron and copper chelates.
    Buettner GR
    Free Radic Res Commun; 1986; 1(6):349-53. PubMed ID: 2851502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of transition metal ion-catalysed ascorbate oxidation and lipid peroxidation by allopurinol and oxypurinol.
    Ko KM; Godin DV
    Biochem Pharmacol; 1990 Aug; 40(4):803-9. PubMed ID: 2117456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of metal ions on radical intensity and cytotoxic activity of ascorbate.
    Satoh K; Sakagami H
    Anticancer Res; 1997; 17(2A):1125-9. PubMed ID: 9137459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ascorbic acid in human seminal plasma is protected from iron-mediated oxidation, but is potentially exposed to copper-induced damage.
    Menditto A; Pietraforte D; Minetti M
    Hum Reprod; 1997 Aug; 12(8):1699-705. PubMed ID: 9308796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidation by trace Cu2+ ions underlies the ability of ascorbate to induce vascular dysfunction in the rat perfused mesentery.
    Nelli S; Craig J; Martin W
    Eur J Pharmacol; 2009 Jul; 614(1-3):84-90. PubMed ID: 19394330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different cellular targets for Cu- and Fe-catalyzed oxidation observed using a Cu-compatible thiobarbituric acid assay.
    Gelvan D; Saltman P
    Biochim Biophys Acta; 1990 Sep; 1035(3):353-60. PubMed ID: 2119808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pro-oxidant activation of ocular reductants. 1. Copper and riboflavin stimulate ascorbate oxidation causing lens epithelial cytotoxicity in vitro.
    Wolff SP; Wang GM; Spector A
    Exp Eye Res; 1987 Dec; 45(6):777-89. PubMed ID: 2828093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site.
    Graf E; Mahoney JR; Bryant RG; Eaton JW
    J Biol Chem; 1984 Mar; 259(6):3620-4. PubMed ID: 6323433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of diglycylhistidine on the oxidation of ascorbate catalyzed by Cu(II)].
    Liu H; Pang YH
    Yao Xue Xue Bao; 1989; 24(2):155-8. PubMed ID: 2801140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.