BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3566805)

  • 1. Effects of organophosphates on presynaptic events in the vascularly perfused phrenic nerve-hemidiaphragm preparation from the rat.
    Andersen RA; Malthe-Sørenssen D; Odden E; Fonnum F
    Biochem Pharmacol; 1987 Apr; 36(7):1107-17. PubMed ID: 3566805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diisopropylfluorophosphate inhibits choline efflux from the perfused rat hemidiaphragm.
    Millington WR; Myers AC; Bierkamper GG
    Eur J Pharmacol; 1985 Sep; 115(1):37-44. PubMed ID: 4043234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streptozocin-diabetes modifies acetylcholine release from mouse phrenic nerve terminal and presynaptic sensitivity to succinylcholine.
    Kimura I; Okazaki M; Kimura M
    Jpn J Pharmacol; 1993 May; 62(1):35-41. PubMed ID: 8341027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surplus acetylcholine and acetylcholine release in the rat diaphragm.
    Molenaar PC; Oen BS; Polak RL; van der Laaken AL
    J Physiol; 1987 Apr; 385():147-67. PubMed ID: 3498823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twitch potentiation by organophosphate anticholinesterases in rat phrenic nerve diaphragm preparations.
    Clark AL; Hobbiger F
    Br J Pharmacol; 1983 Jan; 78(1):239-46. PubMed ID: 6824814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.
    Correia-de-Sá P; Ribeiro JA
    Br J Pharmacol; 1994 Feb; 111(2):582-8. PubMed ID: 8004402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinylcholine-induced acceleration and suppression of electrically evoked acetylcholine release from mouse phrenic nerve-hemidiaphragm muscle preparation.
    Kimura I; Okazaki M; Uwano T; Kobayashi S; Kimura M
    Jpn J Pharmacol; 1991 Nov; 57(3):397-403. PubMed ID: 1813665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of soman, sarin and VX on specific binding of 3H-quinuclidinyl benzilate in rat cerebral cortex homogenates].
    Zhao DL; Wang ZX; Pei SQ; Liu CH
    Zhongguo Yao Li Xue Bao; 1983 Dec; 4(4):225-8. PubMed ID: 6230862
    [No Abstract]   [Full Text] [Related]  

  • 9. The release of labelled acetylcholine and choline from cerebral cortical slices stimulated electrically.
    Richardson IW; Szerb JC
    Br J Pharmacol; 1974 Dec; 52(4):499-507. PubMed ID: 4455326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central respiratory effects versus neuromuscular actions of nerve agents.
    Rickett DL; Glenn JF; Beers ET
    Neurotoxicology; 1986; 7(1):225-36. PubMed ID: 3714123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Choline transport and metabolism in soman- or sarin-intoxicated brain.
    Drewes LR; Singh AK
    J Neurochem; 1988 Mar; 50(3):868-75. PubMed ID: 3339360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aconitine-induced increase and decrease of acetylcholine release in the mouse phrenic nerve-hemidiaphragm muscle preparation.
    Okazaki M; Kimura I; Kimura M
    Jpn J Pharmacol; 1994 Dec; 66(4):421-6. PubMed ID: 7723217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential release of newly synthesized 3 H-acetylcholine from rat cerebral cortex slices in vitro.
    Molenaar PC; Nickolson VJ; Polak RL
    Br J Pharmacol; 1973 Jan; 47(1):97-108. PubMed ID: 4717024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential release of [3H]acetylcholine from the rat phrenic nerve-hemidiaphragm preparation by electrical nerve stimulation and by high potassium.
    Wessler I; Steinlein O
    Neuroscience; 1987 Jul; 22(1):289-99. PubMed ID: 2442663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In favour of the vesicular hypothesis: neurochemical evidence that vesamicol (AH5183) inhibits stimulation-evoked release of acetylcholine from neuromuscular junction.
    Vizi ES
    Br J Pharmacol; 1989 Nov; 98(3):898-902. PubMed ID: 2590773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of [3H]acetylcholine from a modified rat phrenic nerve-hemidiaphragm preparation.
    Wessler I; Kilbinger H
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Dec; 334(4):357-64. PubMed ID: 2881215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mobilization of acetylcholine: the weak link in neuromuscular transmission during partial neuromuscular block with d-tubocurarine.
    Foldes FF; Chaudhry IA; Kinjo M; Nagashima H
    Anesthesiology; 1989 Aug; 71(2):218-23. PubMed ID: 2547326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of stimulation-evoked release of newly formed acetylcholine from mouse hemidiaphragm preparation.
    Somogyi GT; Vizi ES; Chaudhry IA; Nagashima H; Duncalf D; Foldes FF; Goldiner PL
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Jul; 336(1):11-5. PubMed ID: 2819746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple actions of anticholinesterase agents on chemosensitive synapses: molecular basis for prophylaxis and treatment of organophosphate poisoning.
    Albuquerque EX; Deshpande SS; Kawabuchi M; Aracava Y; Idriss M; Rickett DL; Boyne AF
    Fundam Appl Toxicol; 1985 Dec; 5(6 Pt 2):S182-203. PubMed ID: 2868960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synthesis, turnover and release of surplus acetylcholine in a sympathetic ganglion.
    Collier B; Katz HS
    J Physiol; 1971 May; 214(3):537-52. PubMed ID: 4325622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.