These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35668581)

  • 1. Limitations of Using Small Molecules to Identify Catalyst-Transfer Polycondensation Reactions.
    Bryan ZJ; Hall AO; Zhao CT; Chen J; McNeil AJ
    ACS Macro Lett; 2016 Jan; 5(1):69-72. PubMed ID: 35668581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matchmaking in Catalyst-Transfer Polycondensation: Optimizing Catalysts based on Mechanistic Insight.
    Leone AK; McNeil AJ
    Acc Chem Res; 2016 Dec; 49(12):2822-2831. PubMed ID: 27936580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ring-Walking in Catalyst-Transfer Polymerization.
    Leone AK; Goldberg PK; McNeil AJ
    J Am Chem Soc; 2018 Jun; 140(25):7846-7850. PubMed ID: 29905466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversifying Cross-Coupling Strategies, Catalysts and Monomers for the Controlled Synthesis of Conjugated Polymers.
    Baker MA; Tsai CH; Noonan KJT
    Chemistry; 2018 Sep; 24(50):13078-13088. PubMed ID: 29486100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scope of controlled synthesis via chain-growth condensation polymerization: from aromatic polyamides to π-conjugated polymers.
    Yokozawa T; Ohta Y
    Chem Commun (Camb); 2013 Sep; 49(75):8281-310. PubMed ID: 23945715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chain-growth polycondensation for well-defined condensation polymers and polymer architecture.
    Yokozawa T; Yokoyama A
    Chem Rec; 2005; 5(1):47-57. PubMed ID: 15806548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The History of Palladium-Catalyzed Cross-Couplings Should Inspire the Future of Catalyst-Transfer Polymerization.
    Leone AK; Mueller EA; McNeil AJ
    J Am Chem Soc; 2018 Nov; 140(45):15126-15139. PubMed ID: 30383365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology.
    Cheng S; Zhao R; Seferos DS
    Acc Chem Res; 2021 Nov; 54(22):4203-4214. PubMed ID: 34726058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palladium-catalyzed chain-growth polycondensation of AB-type monomers: high catalyst turnover and polymerization rates.
    Tkachov R; Senkovskyy V; Beryozkina T; Boyko K; Bakulev V; Lederer A; Sahre K; Voit B; Kiriy A
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2402-7. PubMed ID: 24520053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kumada Catalyst-Transfer Polycondensation: Mechanism, Opportunities, and Challenges.
    Kiriy A; Senkovskyy V; Sommer M
    Macromol Rapid Commun; 2011 Oct; 32(19):1503-17. PubMed ID: 21800394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of halogens in the catalyst transfer polycondensation for π-conjugated polymers.
    Ye S; Foster SM; Pollit AA; Cheng S; Seferos DS
    Chem Sci; 2019 Feb; 10(7):2075-2080. PubMed ID: 30842865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalyst-transfer polycondensation for the synthesis of poly(p-phenylene) with controlled molecular weight and low polydispersity.
    Miyakoshi R; Shimono K; Yokoyama A; Yokozawa T
    J Am Chem Soc; 2006 Dec; 128(50):16012-3. PubMed ID: 17165735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Active Catalyst System Based on Pd (0) and a Phosphine-Based Bulky Ligand for the Synthesis of Thiophene-Containing Conjugated Polymers.
    Liu M; Liu L; Zhang Z; Wan M; Guo H; Li D
    Front Chem; 2021; 9():743091. PubMed ID: 34557476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chain-growth polymerization of aryl Grignards initiated by a stabilized NHC-Pd precatalyst.
    Bryan ZJ; Smith ML; McNeil AJ
    Macromol Rapid Commun; 2012 May; 33(9):842-7. PubMed ID: 22488735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AB- Versus AA+BB-Suzuki Polycondensation: A Palladium/Tris(tert-butyl)phosphine Catalyst Can Outperform Conventional Catalysts.
    Zhang K; Tkachov R; Ditte K; Kiriy N; Kiriy A; Voit B
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900521. PubMed ID: 31788895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Investigation of Catalyst-Transfer Suzuki-Miyaura Condensation Polymerization of Thiophene-Pyridine Biaryl Monomers with the Aid of Model Reactions.
    Tokita Y; Katoh M; Ohta Y; Yokozawa T
    Chemistry; 2016 Nov; 22(48):17436-17444. PubMed ID: 27739169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy.
    Easter QT; Blum SA
    Acc Chem Res; 2019 Aug; 52(8):2244-2255. PubMed ID: 31310095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the missing link in catalyst transfer polymerization.
    He W; Patrick BO; Kennepohl P
    Nat Commun; 2018 Sep; 9(1):3866. PubMed ID: 30250037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pentanuclear Scaffold: A Molecular Platform for Small-Molecule Conversions.
    Kondo M; Masaoka S
    Acc Chem Res; 2020 Oct; 53(10):2140-2151. PubMed ID: 32870647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst-transfer polycondensation. mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene).
    Miyakoshi R; Yokoyama A; Yokozawa T
    J Am Chem Soc; 2005 Dec; 127(49):17542-7. PubMed ID: 16332106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.