These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35668587)

  • 1. Highly Polarized Alkenes as Organocatalysts for the Polymerization of Lactones and Trimethylene Carbonate.
    Naumann S; Thomas AW; Dove AP
    ACS Macro Lett; 2016 Jan; 5(1):134-138. PubMed ID: 35668587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring-opening polymerization of cyclic esters and trimethylene carbonate catalyzed by aluminum half-salen complexes.
    Darensbourg DJ; Karroonnirun O; Wilson SJ
    Inorg Chem; 2011 Jul; 50(14):6775-87. PubMed ID: 21675736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P,O-Phosphinophenolate zinc(II) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, ε-caprolactone and trimethylene carbonate.
    Fliedel C; Rosa V; Alves FM; Martins AM; Avilés T; Dagorne S
    Dalton Trans; 2015 Jul; 44(27):12376-87. PubMed ID: 25847079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heteroleptic tin(II) initiators for the ring-opening (co)polymerization of lactide and trimethylene carbonate: mechanistic insights from experiments and computations.
    Wang L; Kefalidis CE; Sinbandhit S; Dorcet V; Carpentier JF; Maron L; Sarazin Y
    Chemistry; 2013 Sep; 19(40):13463-78. PubMed ID: 23955851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ring-Opening Polymerization of Trimethylene Carbonate with Phosphazene Organocatalyst.
    Zhu J; Luo X; Li X
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipase-Catalyzed Reactive Extrusion: Copolymerization of ε-Caprolactone and ω-Pentadecalactone.
    Li C; Xu W; Lu Y; Gross RA
    Macromol Rapid Commun; 2020 Nov; 41(22):e2000417. PubMed ID: 33047442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithiated Calix[
    Xing T; Jiang C; Elsegood MRJ; Redshaw C
    Inorg Chem; 2021 Oct; 60(20):15543-15556. PubMed ID: 34596403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-metal with metal behavior: metal-free coordination-insertion ring-opening polymerization.
    Wang X; Xu J; Li Z; Liu J; Sun J; Hadjichristidis N; Guo K
    Chem Sci; 2021 Aug; 12(32):10732-10741. PubMed ID: 34447562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Living/controlled ring-opening (co)polymerization of lactones by Al-based catalysts with different sidearms.
    Zhao W; Wang Q; Cui Y; He J; Zhang Y
    Dalton Trans; 2019 May; 48(21):7167-7178. PubMed ID: 30500019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strontium Isopropoxide: A Highly Active Catalyst for the Ring-Opening Polymerization of Lactide and Various Lactones.
    Bandelli D; Weber C; Schubert US
    Macromol Rapid Commun; 2019 Oct; 40(20):e1900306. PubMed ID: 31506988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanium complexes bearing oxa- and azacalix[4, 6]arenes: structural studies and use in the ring opening homo-/co-polymerization of cyclic esters.
    Xing T; Prior TJ; Chen K; Redshaw C
    Dalton Trans; 2021 Mar; 50(12):4396-4407. PubMed ID: 33704325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Block Copolymers of Varying Architecture Through Suppression of Transesterification during Coordinated Anionic Ring Opening Polymerization.
    Lipik VT; Abadie MJ
    Int J Biomater; 2012; 2012():390947. PubMed ID: 22844286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic and mechanistic aspects of the immortal ring-opening polymerization of lactide and trimethylene carbonate with new homo- and heteroleptic tin(II)-phenolate catalysts.
    Poirier V; Roisnel T; Sinbandhit S; Bochmann M; Carpentier JF; Sarazin Y
    Chemistry; 2012 Mar; 18(10):2998-3013. PubMed ID: 22262515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected Periodicity in Cationic Group 5 Initiators for the Ring-Opening Polymerization of Lactones.
    Buchard A; Davidson MG; Gobius du Sart G; Jones MD; Kociok-Köhn G; McCormick SN; McKeown P
    Inorg Chem; 2024 Jan; 63(1):27-38. PubMed ID: 38118120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Heterocyclic Olefins as Organocatalysts for Polymerization: Preparation of Well-Defined Poly(propylene oxide).
    Naumann S; Thomas AW; Dove AP
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9550-4. PubMed ID: 26136456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urea Anions: Simple, Fast, and Selective Catalysts for Ring-Opening Polymerizations.
    Lin B; Waymouth RM
    J Am Chem Soc; 2017 Feb; 139(4):1645-1652. PubMed ID: 28105810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Lewis Pair Polymerization of Lactones Using Metal Halides and N-Heterocyclic Olefins: Theoretical Insights.
    Meisner J; Karwounopoulos J; Walther P; Kästner J; Naumann S
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29462873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pushing Chemical Boundaries with N-Heterocyclic Olefins (NHOs): From Catalysis to Main Group Element Chemistry.
    Roy MMD; Rivard E
    Acc Chem Res; 2017 Aug; 50(8):2017-2025. PubMed ID: 28777537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organocatalysts for the controlled "immortal" ring-opening polymerization of six-membered-ring cyclic carbonates: a metal-free, green process.
    Helou M; Miserque O; Brusson JM; Carpentier JF; Guillaume SM
    Chemistry; 2010 Dec; 16(46):13805-13. PubMed ID: 20945312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organocatalytic Ring-Opening Copolymerization of Trimethylene Carbonate and Dithiolane Trimethylene Carbonate: Impact of Organocatalysts on Copolymerization Kinetics and Copolymer Microstructures.
    Wei J; Meng H; Guo B; Zhong Z; Meng F
    Biomacromolecules; 2018 Jun; 19(6):2294-2301. PubMed ID: 29733651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.