These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35668707)

  • 1. Prospects of cell chemotactic factors in bone and cartilage tissue engineering.
    Chen K; Gao H; Yao Y
    Expert Opin Biol Ther; 2022 Jul; 22(7):883-893. PubMed ID: 35668707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues.
    Cunniffe GM; Díaz-Payno PJ; Sheehy EJ; Critchley SE; Almeida HV; Pitacco P; Carroll SF; Mahon OR; Dunne A; Levingstone TJ; Moran CJ; Brady RT; O'Brien FJ; Brama PAJ; Kelly DJ
    Biomaterials; 2019 Jan; 188():63-73. PubMed ID: 30321864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering.
    Wen YT; Dai NT; Hsu SH
    Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering.
    Chen L; Liu J; Guan M; Zhou T; Duan X; Xiang Z
    Int J Nanomedicine; 2020; 15():6097-6111. PubMed ID: 32884266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair.
    Browe DC; Díaz-Payno PJ; Freeman FE; Schipani R; Burdis R; Ahern DP; Nulty JM; Guler S; Randall LD; Buckley CT; Brama PAJ; Kelly DJ
    Acta Biomater; 2022 Apr; 143():266-281. PubMed ID: 35278686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in microsphere-based scaffolds in bone/cartilage tissue engineering.
    Pan Q; Su W; Yao Y
    Biomed Mater; 2023 Oct; 18(6):. PubMed ID: 37751762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Graphene Nanomaterials-Based Hybrid Scaffolds for Osteogenesis and Chondrogenesis.
    Kang MS; Jang HJ; Lee SH; Shin YC; Hong SW; Lee JH; Kim B; Han DW
    Adv Exp Med Biol; 2022; 1351():65-87. PubMed ID: 35175612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional biomaterials for cartilage regeneration.
    Ge Z; Li C; Heng BC; Cao G; Yang Z
    J Biomed Mater Res A; 2012 Sep; 100(9):2526-36. PubMed ID: 22492677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal stem cell-based tissue engineering for chondrogenesis.
    Seo S; Na K
    J Biomed Biotechnol; 2011; 2011():806891. PubMed ID: 22007146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterials and Gene Therapy: A Smart Combination for MSC Musculoskeletal Engineering.
    Mesure B; Menu P; Venkatesan JK; Cucchiarini M; Velot É
    Curr Stem Cell Res Ther; 2019; 14(4):337-343. PubMed ID: 30516113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice.
    Shen K; Liu X; Qin H; Chai Y; Wang L; Yu B
    Int J Med Sci; 2021; 18(16):3808-3820. PubMed ID: 34790057
    [No Abstract]   [Full Text] [Related]  

  • 15. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of high precision multilayer scaffolds based on Melt Electro-Writing to repair cartilage injury.
    Han Y; Lian M; Sun B; Jia B; Wu Q; Qiao Z; Dai K
    Theranostics; 2020; 10(22):10214-10230. PubMed ID: 32929344
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of decellularized cartilage matrix scaffolds combined with endometrial stem cell-derived osteocytes on osteochondral tissue engineering in rats.
    Bahrami N; Bordbar S; Hasanzadeh E; Goodarzi A; Ai A; Mohamadnia A
    In Vitro Cell Dev Biol Anim; 2022 Jun; 58(6):480-490. PubMed ID: 35727496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells.
    Qasim M; Chae DS; Lee NY
    J Biomed Mater Res A; 2020 Mar; 108(3):394-411. PubMed ID: 31618509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stratified Scaffolds for Osteochondral Tissue Engineering.
    Nooeaid P; Schulze-Tanzil G; Boccaccini AR
    Methods Mol Biol; 2015; 1340():191-200. PubMed ID: 26445840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.
    Gaut C; Sugaya K
    Regen Med; 2015; 10(5):665-79. PubMed ID: 26038952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.