These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35668814)

  • 1. Time-varying graph representation learning via higher-order skip-gram with negative sampling.
    Piaggesi S; Panisson A
    EPJ Data Sci; 2022; 11(1):33. PubMed ID: 35668814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Skip-Gram Based on Graph Structure Information.
    Wang X; Zhao H; Chen H
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph Representation Learning and Its Applications: A Survey.
    Hoang VT; Jeon HJ; You ES; Yoon Y; Jung S; Lee OJ
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal Network Embedding via Tensor Factorization.
    Ma J; Zhang Q; Lou J; Xiong L; Ho JC
    Proc ACM Int Conf Inf Knowl Manag; 2021 Oct; 2021():3313-3317. PubMed ID: 36380815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal network embedding framework with causal anonymous walks representations.
    Makarov I; Savchenko A; Korovko A; Sherstyuk L; Severin N; Kiselev D; Mikheev A; Babaev D
    PeerJ Comput Sci; 2022; 8():e858. PubMed ID: 35174275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Temporal Network-Embedding Algorithm for Link Prediction in Dynamic Networks.
    Abbas K; Abbasi A; Dong S; Niu L; Chen L; Chen B
    Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.
    Crichton G; Guo Y; Pyysalo S; Korhonen A
    BMC Bioinformatics; 2018 May; 19(1):176. PubMed ID: 29783926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating post-hoc explanations for Skip-gram-based node embeddings by identifying important nodes with bridgeness.
    Park H; Neville J
    Neural Netw; 2023 Jul; 164():546-561. PubMed ID: 37210973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Representation Learning and Graph Layout Methods for Visualization.
    Heiter E; Kang B; De Bie T; Lijffijt J; Potel M
    IEEE Comput Graph Appl; 2022; 42(3):19-28. PubMed ID: 35671278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representing Graphs via Gromov-Wasserstein Factorization.
    Xu H; Liu J; Luo D; Carin L
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):999-1016. PubMed ID: 35196227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient Representation Learning From Heterogeneous Data Sources and Knowledge Graphs Using Deep Collective Matrix Factorization: Evaluation Study.
    Kumar S; Nanelia A; Mariappan R; Rajagopal A; Rajan V
    JMIR Med Inform; 2022 Jan; 10(1):e28842. PubMed ID: 35049514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented Graph Neural Network with hierarchical global-based residual connections.
    Rassil A; Chougrad H; Zouaki H
    Neural Netw; 2022 Jun; 150():149-166. PubMed ID: 35313247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery.
    Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q
    BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TigeCMN: On exploration of temporal interaction graph embedding via Coupled Memory Neural Networks.
    Zhang Z; Bu J; Li Z; Yao C; Wang C; Wu J
    Neural Netw; 2021 Aug; 140():13-26. PubMed ID: 33743320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological applications of knowledge graph embedding models.
    Mohamed SK; Nounu A; Nováček V
    Brief Bioinform; 2021 Mar; 22(2):1679-1693. PubMed ID: 32065227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Network Embedding for Graph Representation Learning in Signed Networks.
    Shen X; Chung FL
    IEEE Trans Cybern; 2020 Apr; 50(4):1556-1568. PubMed ID: 30307885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminative graph embedding for label propagation.
    Nguyen CH; Mamitsuka H
    IEEE Trans Neural Netw; 2011 Sep; 22(9):1395-405. PubMed ID: 21788187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signed random walk diffusion for effective representation learning in signed graphs.
    Jung J; Yoo J; Kang U
    PLoS One; 2022; 17(3):e0265001. PubMed ID: 35298507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persona2vec: a flexible multi-role representations learning framework for graphs.
    Yoon J; Yang KC; Jung WS; Ahn YY
    PeerJ Comput Sci; 2021; 7():e439. PubMed ID: 33834106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Task Learning Based Network Embedding.
    Wang S; Wang Q; Gong M
    Front Neurosci; 2019; 13():1387. PubMed ID: 32009877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.