These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35668830)

  • 1. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage.
    Chambers A; Prawer S; Ahnood A; Zhan H
    Front Chem; 2022; 10():924127. PubMed ID: 35668830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D 3C-SiC/Graphene Hybrid Nanolaminate Films for High-Performance Supercapacitors.
    Heuser S; Yang N; Hof F; Schulte A; Schönherr H; Jiang X
    Small; 2018 Nov; 14(45):e1801857. PubMed ID: 30307709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping.
    Chi YW; Hu CC; Shen HH; Huang KP
    Nano Lett; 2016 Sep; 16(9):5719-27. PubMed ID: 27548051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.
    Richey FW; Dyatkin B; Gogotsi Y; Elabd YA
    J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards more Durable Electrochemical Capacitors by Elucidating the Ageing Mechanisms under Different Testing Procedures.
    He M; Fic K; Frąckowiak E; Novák P; Berg EJ
    ChemElectroChem; 2019 Jan; 6(2):566-573. PubMed ID: 31008014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preaddition of Cations to Electrolytes for Aqueous 2.2 V High Voltage Hybrid Supercapacitor with Superlong Cycling Life and Its Energy Storage Mechanism.
    Zhang M; Fan H; Gao Y; Zhao N; Wang C; Ma J; Ma L; Yadav AK; Wang W; Vincent Lee WS; Xiong T; Xue J; Xia Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17659-17668. PubMed ID: 32202755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors.
    Asghar A; Khan K; Hakami O; Alamier WM; Ali SK; Zelai T; Rashid MS; Tareen AK; Al-Harthi EA
    Front Chem; 2024; 12():1402563. PubMed ID: 38831913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.
    Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS
    ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdenum Sulfide Nanoflowers as Electrodes for Efficient and Scalable Lithium-Ion Capacitors.
    Mir RA; Hoseini AHA; Hansen EJ; Tao L; Zhang Y; Liu J
    Chemistry; 2024 Apr; ():e202400907. PubMed ID: 38649319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.
    Wang Y; Song Y; Xia Y
    Chem Soc Rev; 2016 Oct; 45(21):5925-5950. PubMed ID: 27545205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors.
    Jiang DE; Wu J
    J Phys Chem Lett; 2013 Apr; 4(8):1260-7. PubMed ID: 26282139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte.
    Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in WO
    Mineo G; Bruno E; Mirabella S
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor.
    Chen S; Yang G; Zhao X; Wang N; Luo T; Chen X; Wu T; Jiang S; van Aken PA; Qu S; Li T; Du L; Zhang J; Wang H; Wang H
    Front Chem; 2020; 8():663. PubMed ID: 33195003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Electrochemical Performance of Supercapacitors via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material.
    Wu C; Zhang F; Xiao X; Chen J; Sun J; Gandla D; Ein-Eli Y; Tan DQ
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.