BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35668995)

  • 21. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome.
    Harris RA; McAllister JM; Strauss JF
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AMH inhibits androgen production in human theca cells.
    Chen M; Guo X; Zhong Y; Liu Y; Cai B; Wu R; Huang C; Zhou C
    J Steroid Biochem Mol Biol; 2023 Feb; 226():106216. PubMed ID: 36356855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects.
    Wood JR; Nelson-Degrave VL; Jansen E; McAllister JM; Mosselman S; Strauss JF
    Physiol Genomics; 2005 Feb; 20(3):233-43. PubMed ID: 15598877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS.
    Indran IR; Lee BH; Yong EL
    Best Pract Res Clin Obstet Gynaecol; 2016 Nov; 37():12-24. PubMed ID: 27118251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Family-Based Quantitative Trait Meta-Analysis Implicates Rare Noncoding Variants in DENND1A in Polycystic Ovary Syndrome.
    Dapas M; Sisk R; Legro RS; Urbanek M; Dunaif A; Hayes MG
    J Clin Endocrinol Metab; 2019 Sep; 104(9):3835-3850. PubMed ID: 31038695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Search for the Causes of Common Hyperandrogenism, 1965 to circa 2015.
    Rosenfield RL
    Endocr Rev; 2024 Mar; ():. PubMed ID: 38457123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries.
    Gilling-Smith C; Willis DS; Beard RW; Franks S
    J Clin Endocrinol Metab; 1994 Oct; 79(4):1158-65. PubMed ID: 7962289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DENND1A desensitizes granulosa cells to FSH by arresting intracellular FSHR transportation.
    Dou Y; Zhao R; Wu H; Yu Z; Yin C; Yang J; Yang C; Luan X; Cheng Y; Huang T; Bian Y; Han S; Zhang Y; Xu X; Chen ZJ; Zhao H; Zhao S
    Sci China Life Sci; 2024 Apr; ():. PubMed ID: 38709439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DENND1A gene variants in Bahraini Arab women with polycystic ovary syndrome.
    Gammoh E; Arekat MR; Saldhana FL; Madan S; Ebrahim BH; Almawi WY
    Gene; 2015 Apr; 560(1):30-3. PubMed ID: 25626177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential association of DENND1A genetic variants with polycystic ovary syndrome in Tunisian but not Bahraini Arab women.
    Dallel M; Sarray S; Douma Z; Hachani F; Al-Ansari AK; Letaifa DB; Mahjoub T; Almawi WY
    Gene; 2018 Mar; 647():79-84. PubMed ID: 29325736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased androgen response to follicle-stimulating hormone administration in women with polycystic ovary syndrome.
    Wachs DS; Coffler MS; Malcom PJ; Shimasaki S; Chang RJ
    J Clin Endocrinol Metab; 2008 May; 93(5):1827-33. PubMed ID: 18285408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. miR-130b-3p is high-expressed in polycystic ovarian syndrome and promotes granulosa cell proliferation by targeting SMAD4.
    Bao D; Li M; Zhou D; Zhuang C; Ge Z; Wei Q; Zhang L
    J Steroid Biochem Mol Biol; 2021 May; 209():105844. PubMed ID: 33582305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Derailed peripheral circadian genes in polycystic ovary syndrome patients alters peripheral conversion of androgens synthesis.
    Johnson BS; Krishna MB; Padmanabhan RA; Pillai SM; Jayakrishnan K; Laloraya M
    Hum Reprod; 2022 Jul; 37(8):1835-1855. PubMed ID: 35728080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome.
    Nelson VL; Qin KN; Rosenfield RL; Wood JR; Penning TM; Legro RS; Strauss JF; McAllister JM
    J Clin Endocrinol Metab; 2001 Dec; 86(12):5925-33. PubMed ID: 11739466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted deletion of NR2F2 and VCAM1 in theca cells impacts ovarian follicular development: insights into polycystic ovary syndrome?†.
    Candelaria NR; Richards JS
    Biol Reprod; 2024 Apr; 110(4):782-797. PubMed ID: 38224314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential activity of the cytochrome P450 17alpha-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells.
    Wickenheisser JK; Quinn PG; Nelson VL; Legro RS; Strauss JF; McAllister JM
    J Clin Endocrinol Metab; 2000 Jun; 85(6):2304-11. PubMed ID: 10852468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells.
    Fukuda S; Orisaka M; Tajima K; Hattori K; Kotsuji F
    J Ovarian Res; 2009 Nov; 2(1):17. PubMed ID: 19917087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of human (adrenal) androgen biosynthesis-New insights from novel throughput technology studies.
    Udhane SS; Flück CE
    Biochem Pharmacol; 2016 Feb; 102():20-33. PubMed ID: 26498719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Luteinizing hormone stimulates the expression of amphiregulin in human theca cells.
    Liu Y; Zhong Y; Shen X; Guo X; Wu R; Yang T; Chen M
    J Ovarian Res; 2022 Dec; 15(1):129. PubMed ID: 36476625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism for protein kinase C inhibition of androgen production and 17alpha-hydroxylase expression in a theca cell tumor model.
    Beshay VE; Havelock JC; Sirianni R; Ye P; Suzuki T; Rainey WE; Carr BR
    J Clin Endocrinol Metab; 2007 Dec; 92(12):4802-9. PubMed ID: 17895316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.