BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35669388)

  • 1. Deep Residual Convolutional Neural Networks for Brain-Computer Interface to Visualize Neural Processing of Hand Movements in the Human Brain.
    Fujiwara Y; Ushiba J
    Front Comput Neurosci; 2022; 16():882290. PubMed ID: 35669388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of deep learning classification of continuous noninvasive brain-computer interface control.
    Stieger JR; Engel SA; Suma D; He B
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038873
    [No Abstract]   [Full Text] [Related]  

  • 3. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG.
    Cooney C; Korik A; Folli R; Coyle D
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.
    Zhang Y; Hong D; McClement D; Oladosu O; Pridham G; Slaney G
    J Neurosci Methods; 2021 Apr; 353():109098. PubMed ID: 33582174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features.
    Aellen FM; Göktepe-Kavis P; Apostolopoulos S; Tzovara A
    J Neurosci Methods; 2021 Dec; 364():109367. PubMed ID: 34563599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal-spatial convolutional residual network for decoding attempted movement related EEG signals of subjects with spinal cord injury.
    Mirzabagherian H; Menhaj MB; Suratgar AA; Talebi N; Abbasi Sardari MR; Sajedin A
    Comput Biol Med; 2023 Sep; 164():107159. PubMed ID: 37531857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks.
    Huang JS; Li Y; Chen BQ; Lin C; Yao B
    Front Neurosci; 2020; 14():808. PubMed ID: 33177970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
    Zhang K; Robinson N; Lee SW; Guan C
    Neural Netw; 2021 Apr; 136():1-10. PubMed ID: 33401114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable functional specialization emerges in deep convolutional networks trained on brain signals.
    Hammer J; Schirrmeister RT; Hartmann K; Marusic P; Schulze-Bonhage A; Ball T
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35421857
    [No Abstract]   [Full Text] [Related]  

  • 13. CNN-based classification of fNIRS signals in motor imagery BCI system.
    Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480
    [No Abstract]   [Full Text] [Related]  

  • 14. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.
    Trakoolwilaiwan T; Behboodi B; Lee J; Kim K; Choi JW
    Neurophotonics; 2018 Jan; 5(1):011008. PubMed ID: 28924568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 17. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and classification of voluntary and imagery movements for brain-computer interface from fNIR and EEG signals through convolutional neural network.
    Rahman MA; Uddin MS; Ahmad M
    Health Inf Sci Syst; 2019 Dec; 7(1):22. PubMed ID: 31656595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks.
    Kwon OY; Lee MH; Guan C; Lee SW
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):3839-3852. PubMed ID: 31725394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.