These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35669546)

  • 1. How a sensitive analysis on the coupling geology and borehole heat exchanger characteristics can improve the efficiency and production of shallow geothermal plants.
    Chicco JM; Mandrone G
    Heliyon; 2022 Jun; 8(6):e09545. PubMed ID: 35669546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of operational temperature changes and freeze-thaw cycles on the hydraulic conductivity of borehole heat exchangers.
    Kupfernagel JH; Hesse JC; Schedel M; Welsch B; Anbergen H; Müller L; Sass I
    Geotherm Energy (Heidelb); 2021; 9(1):24. PubMed ID: 38624793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis on heat transfer performance of coaxial borehole heat exchanger in a layered subsurface with groundwater.
    He X; Li J; Chen Y; Niu B
    Heliyon; 2024 Sep; 10(18):e37442. PubMed ID: 39309901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed Thermal Response Multi-Source Modeling to Evaluate Heterogeneous Subsurface Properties.
    Liu H; Stumpf AJ; Lin YF; Liu X
    Ground Water; 2023 Mar; 61(2):224-236. PubMed ID: 34859432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts.
    Alcaraz M; García-Gil A; Vázquez-Suñé E; Velasco V
    Sci Total Environ; 2016 Feb; 543(Pt A):536-546. PubMed ID: 26605833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel wireless sensor system for dynamic characterization of borehole heat exchangers.
    Martos J; Montero Á; Torres J; Soret J; Martínez G; García-Olcina R
    Sensors (Basel); 2011; 11(7):7082-94. PubMed ID: 22164005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geothermal waste heat utilization from in situ thermal bitumen recovery operations.
    Nakevska N; Schincariol RA; Dehkordi SE; Cheadle BA
    Ground Water; 2015; 53(2):251-60. PubMed ID: 24825605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.
    Dehkordi SE; Schincariol RA; Olofsson B
    Ground Water; 2015; 53(4):558-71. PubMed ID: 25227154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling a Borehole Thermal Model and MT3DMS to Simulate Dynamic Ground Source Heat Pump Efficiency.
    Zong Y; Valocchi AJ; Lin YF
    Ground Water; 2023 Mar; 61(2):237-244. PubMed ID: 34913479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Borehole Heat Exchangers-Addressing the Application Gap with Groundwater Science.
    Schincariol RA; Raymond J
    Ground Water; 2023 Mar; 61(2):163-170. PubMed ID: 33774814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of underground climate change on urban geothermal potential: Lessons learnt from a case study in London.
    Bidarmaghz A; Choudhary R; Narsilio G; Soga K
    Sci Total Environ; 2021 Jul; 778():146196. PubMed ID: 33714806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Design Tool for Solar Thermal Remediation Using Borehole Heat Exchangers.
    Ornelles AD; Falta RW; Divine CE
    Ground Water; 2023 Mar; 61(2):245-254. PubMed ID: 36250992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a method for the sustainable planning and management of ground source heat pump systems in an urban environment, considering the effects of reciprocal thermal interference.
    Belliardi M; Soma L; Perego R; Pera S; Di Sipio E; Zarrella A; Carnieletto L; Galgaro A; Badenes B; Pasquali R; Bertermann D; Sanner B
    Open Res Eur; 2022; 2():58. PubMed ID: 37645277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress and challenges of helical-shaped geothermal heat exchangers.
    Rashidi S; Bakhshi N; Rafee R
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):28965-28992. PubMed ID: 33864212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method.
    Leyde BP; Klein SA; Nellis GF; Skye H
    Geothermics; 2017 Mar; 66():174-182. PubMed ID: 28785125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation.
    Basok B; Davydenko B; Koshlak H; Novikov V
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat exchange characteristics of underground and pavement buried pipes for bridge deck heating conditions.
    Zheng X; Song Z; Ding Y
    PLoS One; 2024; 19(5):e0298077. PubMed ID: 38743764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of hydrogeological characters of fractured rock on thermodynamic performance of ground-coupled heat pump.
    Zou H; Pei P; Zhang J
    PLoS One; 2021; 16(5):e0252056. PubMed ID: 34038478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale urban underground hydro-thermal modelling - A case study of the Royal Borough of Kensington and Chelsea, London.
    Bidarmaghz A; Choudhary R; Soga K; Terrington RL; Kessler H; Thorpe S
    Sci Total Environ; 2020 Jan; 700():134955. PubMed ID: 31739273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the thermal performance of vertical ground heat exchanger by modifying spiral tube geometry: A numerical study.
    Hasan N; Ali MH; Pratik NA; Lubaba N; Miyara A
    Heliyon; 2024 Aug; 10(15):e35718. PubMed ID: 39170216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.