These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35670003)

  • 1. Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology.
    Cho SY; Kwon O; Kim SC; Song H; Kim K; Choi MJ
    Investig Clin Urol; 2022 Jul; 63(4):385-393. PubMed ID: 35670003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of cavitation activity by different shockwave pulsing regimes.
    Huber P; Debus J; Jöchle K; Simiantonakis I; Jenne J; Rastert R; Spoo J; Lorenz WJ; Wannenmacher M
    Phys Med Biol; 1999 Jun; 44(6):1427-37. PubMed ID: 10498515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study.
    Pahk KJ
    Ultrason Sonochem; 2021 Sep; 77():105699. PubMed ID: 34371476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial Cavitation Behaviors Induced by Nonlinear Focused Ultrasound Pulses.
    Bawiec CR; Rosnitskiy PB; Peek AT; Maxwell AD; Kreider W; Haar GRT; Sapozhnikov OA; Khokhlova VA; Khokhlova TD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Sep; 68(9):2884-2895. PubMed ID: 33861702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient cavitation and acoustic emission produced by different laser lithotripters.
    Zhong P; Tong HL; Cocks FH; Pearle MS; Preminger GM
    J Endourol; 1998 Aug; 12(4):371-8. PubMed ID: 9726407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.
    Zhong P; Tong HL; Cocks FH; Preminger GM
    J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter.
    Huber P; Jöchle K; Debus J
    Phys Med Biol; 1998 Oct; 43(10):3113-28. PubMed ID: 9814538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.
    Chan KF; Vassar GJ; Pfefer TJ; Teichman JM; Glickman RD; Weintraub ST; Welch AJ
    Lasers Surg Med; 1999; 25(1):22-37. PubMed ID: 10421883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cavitation bubble formation during Erbium:YAG laser vitrectomy].
    Mrochen M; Riedel P; Donitzky C; Seiler T
    Ophthalmologe; 2001 Feb; 98(2):163-7. PubMed ID: 11263042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Cavitation in Energy Delivery and Stone Damage During Laser Lithotripsy.
    Ho DS; Scialabba D; Terry RS; Ma X; Chen J; Sankin GN; Xiang G; Qi R; Preminger GM; Lipkin ME; Zhong P
    J Endourol; 2021 Jun; 35(6):860-870. PubMed ID: 33514285
    [No Abstract]   [Full Text] [Related]  

  • 16. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.
    Duryea AP; Cain CA; Tamaddoni HA; Roberts WW; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1619-26. PubMed ID: 25265172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of the implosion of ESWL-induced cavitation bubbles.
    Delacrétaz G; Rink K; Pittomvils G; Lafaut JP; Vandeursen H; Boving R
    Ultrasound Med Biol; 1995; 21(1):97-103. PubMed ID: 7754583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.
    Zhou Y; Gao XW
    J Acoust Soc Am; 2013 Aug; 134(2):1683-94. PubMed ID: 23927209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.