These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 35670123)
1. Machine Learning Prediction Models for Neurodevelopmental Outcome After Preterm Birth: A Scoping Review and New Machine Learning Evaluation Framework. van Boven MR; Henke CE; Leemhuis AG; Hoogendoorn M; van Kaam AH; Königs M; Oosterlaan J Pediatrics; 2022 Jul; 150(1):. PubMed ID: 35670123 [TBL] [Abstract][Full Text] [Related]
2. Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: A systematic review. Yang Q; Fan X; Cao X; Hao W; Lu J; Wei J; Tian J; Yin M; Ge L Acta Obstet Gynecol Scand; 2023 Jan; 102(1):7-14. PubMed ID: 36397723 [TBL] [Abstract][Full Text] [Related]
3. Longitudinal study of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome. Gui L; Loukas S; Lazeyras F; Hüppi PS; Meskaldji DE; Borradori Tolsa C Neuroimage; 2019 Jan; 185():728-741. PubMed ID: 29908311 [TBL] [Abstract][Full Text] [Related]
4. Improving preterm newborn identification in low-resource settings with machine learning. Rittenhouse KJ; Vwalika B; Keil A; Winston J; Stoner M; Price JT; Kapasa M; Mubambe M; Banda V; Muunga W; Stringer JSA PLoS One; 2019; 14(2):e0198919. PubMed ID: 30811399 [TBL] [Abstract][Full Text] [Related]
5. Language function following preterm birth: prediction using machine learning. Valavani E; Blesa M; Galdi P; Sullivan G; Dean B; Cruickshank H; Sitko-Rudnicka M; Bastin ME; Chin RFM; MacIntyre DJ; Fletcher-Watson S; Boardman JP; Tsanas A Pediatr Res; 2022 Aug; 92(2):480-489. PubMed ID: 34635792 [TBL] [Abstract][Full Text] [Related]
6. Predicting 2-year neurodevelopmental outcomes in preterm infants using multimodal structural brain magnetic resonance imaging with local connectivity. Jang YH; Ham J; Kasani PH; Kim H; Lee JY; Lee GY; Han TH; Kim BN; Lee HJ Sci Rep; 2024 Apr; 14(1):9331. PubMed ID: 38653988 [TBL] [Abstract][Full Text] [Related]
7. Machine learning for understanding and predicting neurodevelopmental outcomes in premature infants: a systematic review. Baker S; Kandasamy Y Pediatr Res; 2023 Jan; 93(2):293-299. PubMed ID: 35641551 [TBL] [Abstract][Full Text] [Related]
8. Developing a practical neurodevelopmental prediction model for targeting high-risk very preterm infants during visit after NICU: a retrospective national longitudinal cohort study. Chung HW; Chen JC; Chen HL; Ko FY; Ho SY; BMC Med; 2024 Feb; 22(1):68. PubMed ID: 38360711 [TBL] [Abstract][Full Text] [Related]
9. Supervised contrastive learning enhances graph convolutional networks for predicting neurodevelopmental deficits in very preterm infants using brain structural connectome. Li H; Wang J; Li Z; Cecil KM; Altaye M; Dillman JR; Parikh NA; He L Neuroimage; 2024 May; 291():120579. PubMed ID: 38537766 [TBL] [Abstract][Full Text] [Related]
10. Are Simple Magnetic Resonance Imaging Biomarkers Predictive of Neurodevelopmental Outcome at Two Years in Very Preterm Infants? Dewan MV; Herrmann R; Schweiger B; Sirin S; Müller H; Storbeck T; Dransfeld F; Felderhoff-Müser U; Hüning B Neonatology; 2019; 116(4):331-340. PubMed ID: 31454812 [TBL] [Abstract][Full Text] [Related]
11. Predicting 2-year neurodevelopmental outcomes in extremely preterm infants using graphical network and machine learning approaches. Juul SE; Wood TR; German K; Law JB; Kolnik SE; Puia-Dumitrescu M; Mietzsch U; Gogcu S; Comstock BA; Li S; Mayock DE; Heagerty PJ; EClinicalMedicine; 2023 Feb; 56():101782. PubMed ID: 36618896 [TBL] [Abstract][Full Text] [Related]
12. A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants. He L; Li H; Wang J; Chen M; Gozdas E; Dillman JR; Parikh NA Sci Rep; 2020 Sep; 10(1):15072. PubMed ID: 32934282 [TBL] [Abstract][Full Text] [Related]
13. Antenatal prediction models for outcomes of extremely and very preterm infants based on machine learning. Ushida T; Kotani T; Baba J; Imai K; Moriyama Y; Nakano-Kobayashi T; Iitani Y; Nakamura N; Hayakawa M; Kajiyama H; Arch Gynecol Obstet; 2023 Dec; 308(6):1755-1763. PubMed ID: 36502513 [TBL] [Abstract][Full Text] [Related]
14. Predicting in-hospital length of stay for very-low-birth-weight preterm infants using machine learning techniques. Lin WT; Wu TY; Chen YJ; Chang YS; Lin CH; Lin YJ J Formos Med Assoc; 2022 Jun; 121(6):1141-1148. PubMed ID: 34629242 [TBL] [Abstract][Full Text] [Related]
15. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model. Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897 [TBL] [Abstract][Full Text] [Related]
16. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
17. Establishment of a model for predicting preterm birth based on the machine learning algorithm. Zhang Y; Du S; Hu T; Xu S; Lu H; Xu C; Li J; Zhu X BMC Pregnancy Childbirth; 2023 Nov; 23(1):779. PubMed ID: 37950186 [TBL] [Abstract][Full Text] [Related]
18. Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates. Liu M; Lu M; Kim SY; Lee HJ; Duffy BA; Yuan S; Chai Y; Cole JH; Wu X; Toga AW; Jahanshad N; Gano D; Barkovich AJ; Xu D; Kim H Eur Radiol; 2024 Jun; 34(6):3601-3611. PubMed ID: 37957363 [TBL] [Abstract][Full Text] [Related]
19. Impact of mode of conception on neonatal and neurodevelopmental outcomes in preterm infants. Molines L; Nusinovici S; Moreau M; Remy M; May-Panloup P; Flamant C; Roze JC; Van Bogaert P; Bouet PE; Gascoin G Hum Reprod; 2019 Feb; 34(2):356-364. PubMed ID: 30496424 [TBL] [Abstract][Full Text] [Related]