These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35670603)

  • 1. Quantum Perturbation Theory Using Tensor Cores and a Deep Neural Network.
    Finkelstein J; Rubensson EH; Mniszewski SM; Negre CFA; Niklasson AMN
    J Chem Theory Comput; 2022 Jul; 18(7):4255-4268. PubMed ID: 35670603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-Based Molecular Dynamics Simulations Using Tensor Cores.
    Finkelstein J; Smith JS; Mniszewski SM; Barros K; Negre CFA; Rubensson EH; Niklasson AMN
    J Chem Theory Comput; 2021 Oct; 17(10):6180-6192. PubMed ID: 34595916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed Precision Fermi-Operator Expansion on Tensor Cores from a Machine Learning Perspective.
    Finkelstein J; Smith JS; Mniszewski SM; Barros K; Negre CFA; Rubensson EH; Niklasson AMN
    J Chem Theory Comput; 2021 Apr; 17(4):2256-2265. PubMed ID: 33797253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical behavior of NVIDIA tensor cores.
    Fasi M; Higham NJ; Mikaitis M; Pranesh S
    PeerJ Comput Sci; 2021; 7():e330. PubMed ID: 33816984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canonical density matrix perturbation theory.
    Niklasson AM; Cawkwell MJ; Rubensson EH; Rudberg E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063301. PubMed ID: 26764847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. qTorch: The quantum tensor contraction handler.
    Fried ES; Sawaya NPD; Cao Y; Kivlichan ID; Romero J; Aspuru-Guzik A
    PLoS One; 2018; 13(12):e0208510. PubMed ID: 30532242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum supercharger library: hyper-parallelism of the Hartree-Fock method.
    Fernandes KD; Renison CA; Naidoo KJ
    J Comput Chem; 2015 Jul; 36(18):1399-409. PubMed ID: 25975763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.
    Leang SS; Rendell AP; Gordon MS
    J Chem Theory Comput; 2014 Mar; 10(3):908-12. PubMed ID: 26580169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Free Energy Perturbation Revisited: Accurate Free Energies from Mapped Reference Potentials.
    Rizzi A; Carloni P; Parrinello M
    J Phys Chem Lett; 2021 Oct; 12(39):9449-9454. PubMed ID: 34555284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the Power of Multi-GPU Acceleration into the Quantum Interaction Computational Kernel Program.
    Manathunga M; Jin C; Cruzeiro VWD; Miao Y; Mu D; Arumugam K; Keipert K; Aktulga HM; Merz KM; Götz AW
    J Chem Theory Comput; 2021 Jul; 17(7):3955-3966. PubMed ID: 34062061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory.
    Neese F
    J Chem Phys; 2007 Oct; 127(16):164112. PubMed ID: 17979324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.
    Lesiuk M; Balawender R; Zachara J
    J Chem Phys; 2012 Jan; 136(3):034104. PubMed ID: 22280741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational quantum classifiers through the lens of the Hessian.
    Sen P; Bhatia AS; Bhangu KS; Elbeltagi A
    PLoS One; 2022; 17(1):e0262346. PubMed ID: 35051206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a QUBO-Based Density Matrix Electronic Structure Method.
    Negre CFA; Lopez-Bezanilla A; Zhang Y; Akrobotu PD; Mniszewski SM; Tretiak S; Dub PA
    J Chem Theory Comput; 2022 Jul; 18(7):4177-4185. PubMed ID: 35658437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid quantum-classical neural network with deep residual learning.
    Liang Y; Peng W; Zheng ZJ; Silvén O; Zhao G
    Neural Netw; 2021 Nov; 143():133-147. PubMed ID: 34139629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units and a Mixed Precision Matrix Multiplication Library.
    Olivares-Amaya R; Watson MA; Edgar RG; Vogt L; Shao Y; Aspuru-Guzik A
    J Chem Theory Comput; 2010 Jan; 6(1):135-44. PubMed ID: 26614326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating quantum-classical programming models with tensor network simulations.
    McCaskey A; Dumitrescu E; Chen M; Lyakh D; Humble T
    PLoS One; 2018; 13(12):e0206704. PubMed ID: 30532151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct perturbation theory in terms of energy derivatives: scalar-relativistic treatment up to sixth order.
    Schwalbach W; Stopkowicz S; Cheng L; Gauss J
    J Chem Phys; 2011 Nov; 135(19):194114. PubMed ID: 22112073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating and concentrating quantum resource states in noisy environments using a quantum neural network.
    Krisnanda T; Ghosh S; Paterek T; Liew TCH
    Neural Netw; 2021 Apr; 136():141-151. PubMed ID: 33486293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear systems.
    Haidar A; Bayraktar H; Tomov S; Dongarra J; Higham NJ
    Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200110. PubMed ID: 33363437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.