BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35670629)

  • 1. Cellular and molecular basis for the action of retinoic acid in spermatogenesis.
    Griswold MD
    J Mol Endocrinol; 2022 Nov; 69(4):T51-T57. PubMed ID: 35670629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium.
    Sugimoto R; Nabeshima Y; Yoshida S
    Mech Dev; 2012; 128(11-12):610-24. PubMed ID: 22200512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germ Cell-Specific Retinoic Acid Receptor α Functions in Germ Cell Organization, Meiotic Integrity, and Spermatogonia.
    Peer NR; Law SM; Murdoch B; Goulding EH; Eddy EM; Kim K
    Endocrinology; 2018 Sep; 159(9):3403-3420. PubMed ID: 30099545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two functionally redundant sources of retinoic acid secure spermatogonia differentiation in the seminiferous epithelium.
    Teletin M; Vernet N; Yu J; Klopfenstein M; Jones JW; Féret B; Kane MA; Ghyselinck NB; Mark M
    Development; 2019 Jan; 146(1):. PubMed ID: 30487180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronizing spermatogenesis in the mouse.
    Griswold M; Hogarth C
    Biol Reprod; 2022 Nov; 107(5):1159-1165. PubMed ID: 35871549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cycles, waves, and pulses: Retinoic acid and the organization of spermatogenesis.
    Gewiss R; Topping T; Griswold MD
    Andrology; 2020 Jul; 8(4):892-897. PubMed ID: 31670467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis.
    Agrimson KS; Onken J; Mitchell D; Topping TB; Chiarini-Garcia H; Hogarth CA; Griswold MD
    Biol Reprod; 2016 Oct; 95(4):81. PubMed ID: 27488029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of transcriptional factor EB (TFEB) in differentiating spermatogonia potentially promotes cell migration in mouse seminiferous epithelium.
    Liu Y; Hu Y; Wang L; Xu C
    Reprod Biol Endocrinol; 2018 Oct; 16(1):105. PubMed ID: 30360758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CYP26 Enzymes Are Necessary Within the Postnatal Seminiferous Epithelium for Normal Murine Spermatogenesis.
    Hogarth CA; Evans E; Onken J; Kent T; Mitchell D; Petkovich M; Griswold MD
    Biol Reprod; 2015 Jul; 93(1):19. PubMed ID: 26040672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoic acid regulation of male meiosis.
    Hogarth CA; Griswold MD
    Curr Opin Endocrinol Diabetes Obes; 2013 Jun; 20(3):217-23. PubMed ID: 23511242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential roles of gonadotropins to control pulsatile retinoic acid signaling during spermatogenesis.
    Nourashrafeddin S
    Med Hypotheses; 2015 Sep; 85(3):303-4. PubMed ID: 26141633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid signaling in Sertoli cells regulates organization of the blood-testis barrier through cyclical changes in gene expression.
    Hasegawa K; Saga Y
    Development; 2012 Dec; 139(23):4347-55. PubMed ID: 23095883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse Pramel1 regulates spermatogonial development by inhibiting retinoic acid signaling during spermatogenesis.
    Yang M; Ma W; Oatley J; Liu WS
    Development; 2023 Nov; 150(21):. PubMed ID: 37781892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice.
    Diao F; Jiang C; Wang XX; Zhu RL; Wang Q; Yao B; Li CJ
    Sci Rep; 2016 Jul; 6():28917. PubMed ID: 27374985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stage-specific changes in GDNF expression by rat Sertoli cells: a possible regulator of the replication and differentiation of stem spermatogonia.
    Johnston DS; Olivas E; DiCandeloro P; Wright WW
    Biol Reprod; 2011 Oct; 85(4):763-9. PubMed ID: 21653894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regionally distinct patterns of STAT3 phosphorylation in the seminiferous epithelia of mouse testes.
    Nagasawa K; Imura-Kishi K; Uchida A; Hiramatsu R; Kurohmaru M; Kanai Y
    Mol Reprod Dev; 2018 Mar; 85(3):262-270. PubMed ID: 29393534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riding the spermatogenic wave: profiling gene expression within neonatal germ and sertoli cells during a synchronized initial wave of spermatogenesis in mice.
    Evans E; Hogarth C; Mitchell D; Griswold M
    Biol Reprod; 2014 May; 90(5):108. PubMed ID: 24719255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low retinoic acid levels mediate regionalization of the Sertoli valve in the terminal segment of mouse seminiferous tubules.
    Imura-Kishi K; Uchida A; Tsunekawa N; Suzuki H; Takase HM; Hirate Y; Kanai-Azuma M; Hiramatsu R; Kurohmaru M; Kanai Y
    Sci Rep; 2021 Jan; 11(1):1110. PubMed ID: 33441739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production.
    Hogarth CA; Arnold S; Kent T; Mitchell D; Isoherranen N; Griswold MD
    Biol Reprod; 2015 Feb; 92(2):37. PubMed ID: 25519186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term vitamin A deficiency induces alteration of adult mouse spermatogenesis and spermatogonial differentiation: direct effect on spermatogonial gene expression and indirect effects via somatic cells.
    Boucheron-Houston C; Canterel-Thouennon L; Lee TL; Baxendale V; Nagrani S; Chan WY; Rennert OM
    J Nutr Biochem; 2013 Jun; 24(6):1123-35. PubMed ID: 23253600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.