BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35670657)

  • 1. 1,5-Allyl Shift by a Sequential Achmatowicz/Oxonia-Cope/Retro-Achmatowicz Rearrangement.
    Zhang X; Tong Y; Li G; Zhao H; Chen G; Yao H; Tong R
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205919. PubMed ID: 35670657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxonia-cope prins cyclizations: a facile method for the synthesis of tetrahydropyranones bearing quaternary centers.
    Dalgard JE; Rychnovsky SD
    J Am Chem Soc; 2004 Dec; 126(48):15662-3. PubMed ID: 15571386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel oxy-oxonia(azonia)-cope reaction: serendipitous discovery and its application to the synthesis of macrocyclic musks.
    Zou Y; Zhou L; Ding C; Wang Q; Kraft P; Goeke A
    Chem Biodivers; 2014 Oct; 11(10):1608-28. PubMed ID: 25329787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Allyl Transfer Coupled with a Grob Fragmentation.
    Li SG; Chen HJ; Yang YY; Wu WJ; Wu Y
    Chem Asian J; 2015 Nov; 10(11):2333-6. PubMed ID: 26317577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Unexpected Ireland-Claisen Rearrangement Cascade During the Synthesis of the Tricyclic Core of Curcusone C: Mechanistic Elucidation by Trial-and-Error and Automatic Artificial Force-Induced Reaction (AFIR) Computations.
    Lee CW; Taylor BLH; Petrova GP; Patel A; Morokuma K; Houk KN; Stoltz BM
    J Am Chem Soc; 2019 May; 141(17):6995-7004. PubMed ID: 30907087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of an oxonia-Cope rearrangement as a mechanistic probe for Prins cyclizations.
    Jasti R; Anderson CD; Rychnovsky SD
    J Am Chem Soc; 2005 Jul; 127(27):9939-45. PubMed ID: 15998101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products.
    Liang L; Guo LD; Tong R
    Acc Chem Res; 2022 Aug; 55(16):2326-2340. PubMed ID: 35916456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of 2-oxonia Cope rearrangements in Prins cyclization reactions.
    Rychnovsky SD; Marumoto S; Jaber JJ
    Org Lett; 2001 Nov; 3(23):3815-8. PubMed ID: 11700146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric Bisvinylogous Aldolation of Aldehydes via 2-Oxonia-Cope Rearrangement Enabling Total Stereochemical Control.
    Woody D; Padarti A; Han H
    Org Lett; 2018 Apr; 20(8):2472-2476. PubMed ID: 29624061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insight into the formal [1,3]-migration in the thermal Claisen rearrangement.
    Hou S; Li X; Xu J
    J Org Chem; 2012 Dec; 77(23):10856-69. PubMed ID: 23150994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective [5,5]-Sigmatropic Rearrangement by Assembly of Aryl Sulfoxides with Allyl Nitriles.
    Zhang L; He JN; Liang Y; Hu M; Shang L; Huang X; Kong L; Wang ZX; Peng B
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5316-5320. PubMed ID: 30810251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competing sigmatropic shift rearrangements in excited allyl radicals.
    Stranges D; O'Keeffe P; Scotti G; Di Santo R; Houston PL
    J Chem Phys; 2008 Apr; 128(15):151101. PubMed ID: 18433182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When a "Dimroth Rearrangement" Is Not a Dimroth Rearrangement.
    Wentrup C; Mirzaei MS; Kvaskoff D; Taherpour AA
    J Org Chem; 2021 Jun; 86(12):8286-8294. PubMed ID: 34077230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [3,3]-Sigmatropic shifts and retro-ene rearrangements in cyanates, isocyanates, thiocyanates, and isothiocyanates of the form RX-YCN and RX-NCY.
    Koch R; Finnerty JJ; Murali S; Wentrup C
    J Org Chem; 2012 Feb; 77(4):1749-59. PubMed ID: 22251012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-allyl-N-sulfonyl ynamides as synthetic precursors to amidines and vinylogous amidines. An unexpected N-to-C 1,3-sulfonyl shift in nitrile synthesis.
    DeKorver KA; Johnson WL; Zhang Y; Hsung RP; Dai H; Deng J; Lohse AG; Zhang YS
    J Org Chem; 2011 Jun; 76(12):5092-103. PubMed ID: 21563776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combined C-H functionalization/Cope rearrangement: discovery and applications in organic synthesis.
    Davies HM; Lian Y
    Acc Chem Res; 2012 Jun; 45(6):923-35. PubMed ID: 22577963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugate Addition/[3,3] Sigmatropic Shift Processes for Formation of Medium-Ring Cyclic Amines - Do They Circumvent the Woodward-Hoffmann Rules?
    Painter PP; Siebert MR; Tantillo DJ
    J Org Chem; 2015 Dec; 80(23):11699-705. PubMed ID: 26168077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral cobalt(ii) complex-promoted asymmetric
    Zeng H; Wang L; Su Z; Ying M; Lin L; Feng X
    Chem Sci; 2023 Dec; 14(47):13979-13985. PubMed ID: 38075639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New chiral synthons for efficient introduction of bispropionates via stereospecific oxonia-cope rearrangements.
    Chen YH; McDonald FE
    J Am Chem Soc; 2006 Apr; 128(14):4568-9. PubMed ID: 16594682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N[1,3]-Sigmatropic shift in the benzidine rearrangement: experimental and theoretical investigation.
    Hou S; Li X; Xu J
    Org Biomol Chem; 2014 Jul; 12(27):4952-63. PubMed ID: 24879467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.