These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35670665)

  • 1. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis.
    Yu W; Jin K; Wu Y; Zhang Q; Liu Y; Li J; Du G; Chen J; Lv X; Ledesma-Amaro R; Liu L
    Nucleic Acids Res; 2022 Jun; 50(11):6587-6600. PubMed ID: 35670665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis.
    Wu Y; Chen T; Liu Y; Tian R; Lv X; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L
    Nucleic Acids Res; 2020 Jan; 48(2):996-1009. PubMed ID: 31799627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto-
    Dong X; Li N; Liu Z; Lv X; Shen Y; Li J; Du G; Wang M; Liu L
    J Agric Food Chem; 2020 Feb; 68(8):2477-2484. PubMed ID: 32013418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production.
    Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J
    Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Bacillus subtilis for l-valine overproduction.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Nov; 115(11):2778-2792. PubMed ID: 29981237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Level 5-Methyltetrahydrofolate Bioproduction in
    Yang H; Yang J; Liu C; Lv X; Liu L; Li J; Du G; Chen J; Liu Y
    J Agric Food Chem; 2022 May; 70(19):5849-5859. PubMed ID: 35521920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization.
    Wu Y; Li Y; Jin K; Zhang L; Li J; Liu Y; Du G; Lv X; Chen J; Ledesma-Amaro R; Liu L
    Nat Chem Biol; 2023 Mar; 19(3):367-377. PubMed ID: 36646959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Bacillus subtilis for the de novo production of 2'-fucosyllactose.
    Zhang Q; Liu Z; Xia H; Huang Z; Zhu Y; Xu L; Liu Y; Li J; Du G; Lv X; Liu L
    Microb Cell Fact; 2022 Jun; 21(1):110. PubMed ID: 35655274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of Multiple Modules to Improve Amorphadiene Production in
    Song Y; He S; Abdallah II; Jopkiewicz A; Setroikromo R; van Merkerk R; Tepper PG; Quax WJ
    J Agric Food Chem; 2021 Apr; 69(16):4785-4794. PubMed ID: 33877851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis.
    Wu Y; Chen T; Liu Y; Lv X; Li J; Du G; Ledesma-Amaro R; Liu L
    Metab Eng; 2018 Sep; 49():232-241. PubMed ID: 30176395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Substrate Transport and Cofactor Regeneration Systems for Enhancing 2'-Fucosyllactose Synthesis in
    Deng J; Gu L; Chen T; Huang H; Yin X; Lv X; Liu Y; Li N; Liu Z; Li J; Du G; Liu L
    ACS Synth Biol; 2019 Oct; 8(10):2418-2427. PubMed ID: 31550146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus.
    Kong L; Xiong Z; Song X; Xia Y; Ai L
    J Dairy Sci; 2022 Aug; 105(8):6499-6512. PubMed ID: 35691751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    Biotechnol Bioeng; 2020 Jun; 117(6):1817-1825. PubMed ID: 32129468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis.
    Westbrook AW; Ren X; Oh J; Moo-Young M; Chou CP
    Metab Eng; 2018 May; 47():401-413. PubMed ID: 29698777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis.
    Wang C; Cao Y; Wang Y; Sun L; Song H
    Microb Cell Fact; 2019 May; 18(1):90. PubMed ID: 31122258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyruvate-responsive genetic circuits for dynamic control of central metabolism.
    Xu X; Li X; Liu Y; Zhu Y; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L
    Nat Chem Biol; 2020 Nov; 16(11):1261-1268. PubMed ID: 32895497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for Increased Menaquinone-7 Synthesis in
    Chen T; Xia H; Cui S; Lv X; Li X; Liu Y; Li J; Du G; Liu L
    J Microbiol Biotechnol; 2020 May; 30(5):762-769. PubMed ID: 32482943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine.
    Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.