BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35670838)

  • 1. Uptake, Accumulation, and translocation of azoxystrobin by Vegetable plants in soils: influence of soil characteristics and plant species.
    Xu S; Song J; Shen F; Wang Y; Zhang L; Fang H; Yu Y
    Bull Environ Contam Toxicol; 2022 Aug; 109(2):386-392. PubMed ID: 35670838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and accumulation of erythromycin in leafy vegetables and induced phytotoxicity and dietary risks.
    Bao Q; Wang Y; Tang S; Ye F; Yu Z; Ye Q; Wang W
    Sci Total Environ; 2022 Jul; 830():154785. PubMed ID: 35346705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake, Translocation, and Subcellular Distribution of Azoxystrobin in Wheat Plant ( Triticum aestivum L.).
    Ju C; Zhang H; Yao S; Dong S; Cao D; Wang F; Fang H; Yu Y
    J Agric Food Chem; 2019 Jun; 67(24):6691-6699. PubMed ID: 31135152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China.
    Yang B; Gao Y; Zhang C; Zheng X; Li B
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):391-398. PubMed ID: 31792793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of azoxystrobin and its degradation products in soil by P. major L. under cold and salinity stress.
    Romeh AAA
    Pestic Biochem Physiol; 2017 Oct; 142():21-31. PubMed ID: 29107244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical factors affecting uptake and translocation of six pesticides in soil by maize (Zea mays L.).
    Wang F; Li X; Yu S; He S; Cao D; Yao S; Fang H; Yu Y
    J Hazard Mater; 2021 Mar; 405():124269. PubMed ID: 33144009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of Pythium spp. from vegetable crops with molecular markers and sensitivity to azoxystrobin and mefenoxam.
    Matić S; Gilardi G; Gisi U; Gullino ML; Garibaldi A
    Pest Manag Sci; 2019 Feb; 75(2):356-365. PubMed ID: 29888848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipation rates and residues of fungicide azoxystrobin in ginseng and soil at two different cultivated regions in China.
    Hou Z; Wang X; Zhao X; Wang X; Yuan X; Lu Z
    Environ Monit Assess; 2016 Jul; 188(7):440. PubMed ID: 27351188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China.
    Huang RQ; Gao SF; Wang WL; Staunton S; Wang G
    Sci Total Environ; 2006 Sep; 368(2-3):531-41. PubMed ID: 16624379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.
    Manna S; Singh N; Singh VP
    Environ Monit Assess; 2013 Apr; 185(4):2951-60. PubMed ID: 22773147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicity evaluation of azoxystrobin on Eisenia fetida in different soils.
    Xu Y; Li B; Hou K; Du Z; Allen SC; Zhu L; Li W; Zhu L; Wang J; Wang J
    Environ Res; 2021 Mar; 194():110705. PubMed ID: 33400946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case study on antiretroviral drugs uptake from soil irrigated with contaminated water: Bio-accumulation and bio-translocation to roots, stem, leaves, and fruits.
    Kunene PN; Mahlambi PN
    Environ Pollut; 2023 Feb; 319():121004. PubMed ID: 36608725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil.
    Herrero-Hernández E; Marín-Benito JM; Andrades MS; Sánchez-Martín MJ; Rodríguez-Cruz MS
    J Environ Manage; 2015 Nov; 163():78-86. PubMed ID: 26311083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytotoxicity of tris-(1-chloro-2-propyl) phosphate in soil and its uptake and accumulation by pakchoi (Brassica chinensis L. cv. SuZhou).
    Luo Q; Li Y; Wu Z; Wang X; Wang C; Shan Y; Sun L
    Chemosphere; 2021 Aug; 277():130347. PubMed ID: 33780681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of PFOs on the uptake and translocation of emerging contaminants by crops cultivated under soil and soilless conditions.
    Beltrán EM; Fernández-Torija C; Pablos MV; Porcel MÁ; García-Hortigüela P; González-Doncel M
    Ecotoxicol Environ Saf; 2021 Jun; 215():112103. PubMed ID: 33740485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the distribution of pharmaceuticals in soil-water-plant systems.
    Li Y; Sallach JB; Zhang W; Boyd SA; Li H
    Water Res; 2019 Apr; 152():38-46. PubMed ID: 30660096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial and enzymatic activity of soil contaminated with azoxystrobin.
    Baćmaga M; Kucharski J; Wyszkowska J
    Environ Monit Assess; 2015 Oct; 187(10):615. PubMed ID: 26343782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake, translocation, and metabolism of thiamethoxam in soil by leek plants.
    Wang Y; Li X; Shen J; Lang H; Dong S; Zhang L; Fang H; Yu Y
    Environ Res; 2022 Aug; 211():113084. PubMed ID: 35299036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Factors and Prediction of Lead Uptake and Accumulation in Various Soil-Pepper Systems.
    Shi J; Xu Q; Zhou Z; Wu X; Tong J; Cai Q; Wu Q; Shi J
    Environ Toxicol Chem; 2021 May; 40(5):1443-1451. PubMed ID: 33502760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.