BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3567139)

  • 1. Anti-sense peptide recognition of sense peptides: direct quantitative characterization with the ribonuclease S-peptide system using analytical high-performance affinity chromatography.
    Shai Y; Flashner M; Chaiken IM
    Biochemistry; 1987 Feb; 26(3):669-75. PubMed ID: 3567139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense peptide recognition of sense peptides: sequence simplification and evaluation of forces underlying the interaction.
    Shai Y; Brunck TK; Chaiken IM
    Biochemistry; 1989 Oct; 28(22):8804-11. PubMed ID: 2605221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition properties of antisense peptides to Arg8-vasopressin/bovine neurophysin II biosynthetic precursor sequences.
    Fassina G; Zamai M; Brigham-Burke M; Chaiken IM
    Biochemistry; 1989 Oct; 28(22):8811-8. PubMed ID: 2605222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making sense from antisense: a review of experimental data and developing ideas on sense--antisense peptide recognition.
    Tropsha A; Kizer JS; Chaiken IM
    J Mol Recognit; 1992 Jun; 5(2):43-54. PubMed ID: 1472380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of ribonuclease-nucleotide interactions by quantitative affinity chromatography.
    Chaiken IM; Taylor HC
    J Biol Chem; 1976 Apr; 251(7):2044-8. PubMed ID: 1270420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the degeneracy of antisense peptides using affinity chromatography.
    Zhao R; Yu X; Liu H; Zhai L; Xiong S; Su T; Liu G
    J Chromatogr A; 2001 Apr; 913(1-2):421-8. PubMed ID: 11355840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sense-antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science.
    Miller AD
    Expert Opin Biol Ther; 2015 Feb; 15(2):245-67. PubMed ID: 25584818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semisynthetic studies on bovine pancreatic ribonuclease.
    Di Bello C; Lucchiari A; Buso O; Tonellato M
    Int J Pept Protein Res; 1984 Jan; 23(1):61-71. PubMed ID: 6698716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the peptide binding requirements for the cloned human pancreatic polypeptide-preferring receptor.
    Gehlert DR; Schober DA; Beavers L; Gadski R; Hoffman JA; Smiley DL; Chance RE; Lundell I; Larhammar D
    Mol Pharmacol; 1996 Jul; 50(1):112-8. PubMed ID: 8700103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions and uses of antisense peptides in affinity technology.
    Chaiken I
    J Chromatogr; 1992 Apr; 597(1-2):29-36. PubMed ID: 1517330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of protein S C4b-binding protein interactions by homology modeling and inhibitory antibodies.
    Fernández JA; Villoutreix BO; Hackeng TM; Griffin JH; Bouma BN
    Biochemistry; 1994 Sep; 33(37):11073-8. PubMed ID: 7727359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of ceramic fluorapatite-binding peptides from a phage display combinatorial peptide library: optimum affinity tags for fluorapatite chromatography.
    Islam T; Bibi NS; Vennapusa RR; Fernandez-Lahore M
    J Mol Recognit; 2013 Aug; 26(8):341-50. PubMed ID: 23784990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity capture of [Arg8]vasopressin-receptor complex using immobilized antisense peptide.
    Lu FX; Aiyar N; Chaiken I
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3642-6. PubMed ID: 2023913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative high-performance affinity chromatography: evaluation of use for analyzing peptide and protein interactions.
    Fassina G; Swaisgood HE; Chaiken IM
    J Chromatogr; 1986 Apr; 376():87-93. PubMed ID: 3711200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity chromatographic screening of soluble combinatorial peptide libraries.
    Huang PY; Carbonell RG
    Biotechnol Bioeng; 1999 Jun; 63(6):633-41. PubMed ID: 10397820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acids and peptides. XIV. Synthesis and biological activity of three S-peptide analogues of bovine pancreatic ribonuclease A (RNase A).
    Teno N; Tsuboi S; Shimamura T; Okada Y; Yanagida Y; Yoshinaga M; Ohgi K; Irie M
    Chem Pharm Bull (Tokyo); 1987 Feb; 35(2):468-78. PubMed ID: 3594671
    [No Abstract]   [Full Text] [Related]  

  • 17. Genetic coding algorithm for sense and antisense peptide interactions.
    Štambuk N; Konjevoda P; Turčić P; Kövér K; Kujundžić RN; Manojlović Z; Gabričević M
    Biosystems; 2018 Feb; 164():199-216. PubMed ID: 29107641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of bovine pancreatic ribonuclease A, S protein, and S peptide on activation of purified rat hepatic glucocorticoid-receptor complexes.
    Schmidt TJ; Diehl EE; Davidson CJ; Puk MJ; Webb ML; Litwack G
    Biochemistry; 1986 Oct; 25(20):5955-61. PubMed ID: 3790497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isolation and partial characterization of ribonuclease A from Bison bison.
    Stewart GR; Stevenson KJ
    Biochem J; 1973 Nov; 135(3):427-41. PubMed ID: 4772270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined solid-phase/solution synthesis of large ribonuclease A C-terminal peptides containing a non-natural proline analog.
    Cerovský V; Scheraga HA
    J Pept Res; 2005 Jun; 65(6):518-28. PubMed ID: 15885111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.