These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35671395)

  • 1. Plasmon-Assisted Ammonia Electrosynthesis.
    Contreras E; Nixon R; Litts C; Zhang W; Alcorn FM; Jain PK
    J Am Chem Soc; 2022 Jun; 144(24):10743-10751. PubMed ID: 35671395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
    Nazemi M; El-Sayed MA
    Acc Chem Res; 2021 Dec; 54(23):4294-4304. PubMed ID: 34719918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Impact Single-Entity Electrochemistry Enables Plasmon-Enhanced Electrocatalysis.
    Ganguli S; Zhao Z; Parlak O; Hattori Y; Sá J; Sekretareva A
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202302394. PubMed ID: 37078401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Solar Absorber-Electrocatalytic N-Doped Carbon/Alloy/Semiconductor Electrode for Localized Photothermic Electrocatalysis.
    Meng FL; Yilmaz G; Ding TP; Gao M; Ho GW
    Adv Mater; 2019 Sep; 31(37):e1903605. PubMed ID: 31364796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot Carrier Lifetimes and Electrochemical Water Dissociation Enhanced by Nickel Doping of a Plasmonic Electrocatalyst.
    Wan R; Liu S; Wang Y; Yang Y; Tian Y; Jain PK; Kang X
    Nano Lett; 2022 Oct; 22(19):7819-7825. PubMed ID: 36178334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy between Plasmonic and Electrocatalytic Activation of Methanol Oxidation on Palladium-Silver Alloy Nanotubes.
    Huang L; Zou J; Ye JY; Zhou ZY; Lin Z; Kang X; Jain PK; Chen S
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8794-8798. PubMed ID: 31038831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized surface plasmon resonance for enhanced electrocatalysis.
    Zhao J; Xue S; Ji R; Li B; Li J
    Chem Soc Rev; 2021 Nov; 50(21):12070-12097. PubMed ID: 34533143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Nitrate-to-Ammonia Conversion Enabled by Carbon-Decoration of Ni─GaOOH Synthesized via Plasma-Assisted CO
    Babikir AH; Mao X; Du A; Riches JD; Ostrikov KK; O'Mullane AP
    Small; 2024 Mar; ():e2311302. PubMed ID: 38429242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification and description of photothermal heating effects in plasmon-assisted electrochemistry.
    Al-Amin M; Hemmer JV; Joshi PB; Fogelman K; Wilson AJ
    Commun Chem; 2024 Apr; 7(1):70. PubMed ID: 38561493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling nitrate capture with ammonia production through bifunctional redox-electrodes.
    Kim K; Zagalskaya A; Ng JL; Hong J; Alexandrov V; Pham TA; Su X
    Nat Commun; 2023 Feb; 14(1):823. PubMed ID: 36788213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanoparticles Boost Solar-to-Electricity Generation at Ambient Conditions.
    Kashyap RK; Pillai PP
    Nano Lett; 2024 May; 24(18):5585-5592. PubMed ID: 38662652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Plasmon-Assisted Solar Energy Conversion.
    Dodekatos G; Schünemann S; Tüysüz H
    Top Curr Chem; 2016; 371():215-52. PubMed ID: 26092694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallic Heterostructures for Plasmon-Enhanced Electrocatalysis.
    Wu F; Xia S; Wei J; Gao W; Li F; Niu W
    Chemphyschem; 2023 Aug; 24(15):e202200881. PubMed ID: 37093151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.
    Chang C; Yang C; Liu Y; Tao P; Song C; Shang W; Wu J; Deng T
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23412-8. PubMed ID: 27537862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic-Enhanced Oxygen Reduction Reaction of Silver/Graphene Electrocatalysts.
    Shi F; He J; Zhang B; Peng J; Ma Y; Chen W; Li F; Qin Y; Liu Y; Shang W; Tao P; Song C; Deng T; Qian X; Ye J; Wu J
    Nano Lett; 2019 Feb; 19(2):1371-1378. PubMed ID: 30620607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution.
    Chu N; Jiang Y; Liang Q; Liu P; Wang D; Chen X; Li D; Liang P; Zeng RJ; Zhang Y
    Environ Sci Technol; 2023 Mar; 57(11):4379-4395. PubMed ID: 36877891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.