BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35671547)

  • 1. An aptamer-assisted biological nanopore biosensor for ultra-sensitive detection of ochratoxin A with a portable single-molecule measuring instrument.
    Li T; Su Z; Li Y; Xi L; Li G
    Talanta; 2022 Oct; 248():123619. PubMed ID: 35671547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive and regenerable nanopore sensing based on target induced aptamer dissociation.
    Zhang S; Chai H; Cheng K; Song L; Chen W; Yu L; Lu Z; Liu B; Zhao YD
    Biosens Bioelectron; 2020 Mar; 152():112011. PubMed ID: 32056734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples.
    Mermiga E; Pagkali V; Kokkinos C; Economou A
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA).
    Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W
    Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin.
    Li T; Liu L; Li Y; Xie J; Wu HC
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7568-71. PubMed ID: 25966821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling.
    Tong P; Zhang L; Xu JJ; Chen HY
    Biosens Bioelectron; 2011 Nov; 29(1):97-101. PubMed ID: 21855315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of ochratoxin A.
    Li X; Falcone N; Hossain MN; Kraatz HB; Chen X; Huang H
    Talanta; 2021 May; 226():122183. PubMed ID: 33676715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabricated aptamer-based electrochemical "signal-off" sensor of ochratoxin A.
    Kuang H; Chen W; Xu D; Xu L; Zhu Y; Liu L; Chu H; Peng C; Xu C; Zhu S
    Biosens Bioelectron; 2010 Oct; 26(2):710-6. PubMed ID: 20643539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A.
    Hun X; Liu F; Mei Z; Ma L; Wang Z; Luo X
    Biosens Bioelectron; 2013 Jan; 39(1):145-51. PubMed ID: 22938841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of ochratoxin A by fluorescence sensing based on mesoporous materials.
    Wu J; Zhao J; Liu M; Zhao Z; Qiu Y; Li H; Wu J; Bai J
    Biosci Biotechnol Biochem; 2022 Aug; 86(9):1192-1199. PubMed ID: 35810001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive α-hemolysin nanopore detection of MUC1 based on 3D DNA walker.
    Tian R; Yin B; Liu D; Liu Q; Chen S; Li M; Wang L; Zhou S; Wang D
    Anal Chim Acta; 2022 Aug; 1223():340193. PubMed ID: 35999001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation.
    Wang C; Tan R; Li J; Zhang Z
    Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and sensitive approach for ochratoxin A detection using a label-free fluorescent aptasensor.
    Lv Z; Chen A; Liu J; Guan Z; Zhou Y; Xu S; Yang S; Li C
    PLoS One; 2014; 9(1):e85968. PubMed ID: 24465818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MNAzyme catalyzed signal amplification-mediated lateral flow biosensor for portable and sensitive detection of mycotoxin in food samples.
    Yang Y; Shi Y; Zhang X; Li G
    Anal Bioanal Chem; 2024 Feb; 416(4):1057-1067. PubMed ID: 38117324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a fluorescence biosensor for ochratoxin A based on magnetic beads and exonuclease III-assisted DNA cycling signal amplification.
    Liu M; Liu S; Ma Y; Li B
    Anal Methods; 2022 Feb; 14(7):734-740. PubMed ID: 35107449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence Anisotropy-Based Signal-Off and Signal-On Aptamer Assays Using Lissamine Rhodamine B as a Label for Ochratoxin A.
    Li Y; Zhang N; Wang H; Zhao Q
    J Agric Food Chem; 2020 Apr; 68(14):4277-4283. PubMed ID: 32182058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A.
    Wei Y; Zhang J; Wang X; Duan Y
    Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification.
    Ni J; Yang W; Wang Q; Luo F; Guo L; Qiu B; Lin Z; Yang H
    Biosens Bioelectron; 2018 May; 105():182-187. PubMed ID: 29412943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple Design Concept for Dual-Channel Detection of Ochratoxin A Based on Bifunctional Metal-Organic Framework.
    Li W; Zhang X; Hu X; Shi Y; Liang N; Huang X; Wang X; Shen T; Zou X; Shi J
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5615-5623. PubMed ID: 35050582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification.
    Wu H; Liu R; Kang X; Liang C; Lv L; Guo Z
    Mikrochim Acta; 2017 Dec; 185(1):27. PubMed ID: 29594393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.