These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 35671568)
1. Optimised polymer trapped-air lenses for ultrasound focusing in water exploiting Fabry-Pérot resonance. Astolfi L; Hutchins DA; Watson RL; Thomas PJ; Ricci M; Nie L; Freear S; Cooper TP; Clare AT; Laureti S Ultrasonics; 2022 Sep; 125():106781. PubMed ID: 35671568 [TBL] [Abstract][Full Text] [Related]
2. Concentric shell gradient index metamaterials for focusing ultrasound in bulk media. Chitnaduku Thippeswamy M; Kuchibhatla SAR; Rajagopal P Ultrasonics; 2021 Jul; 114():106424. PubMed ID: 33819870 [TBL] [Abstract][Full Text] [Related]
3. Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water. Laureti S; Hutchins DA; Astolfi L; Watson RL; Thomas PJ; Burrascano P; Nie L; Freear S; Askari M; Clare AT; Ricci M Sci Rep; 2020 Jun; 10(1):10601. PubMed ID: 32606299 [TBL] [Abstract][Full Text] [Related]
4. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain. Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet. Sun B; Wang Y; Qu J; Liao C; Yin G; He J; Zhou J; Tang J; Liu S; Li Z; Liu Y Opt Express; 2015 Feb; 23(3):1906-11. PubMed ID: 25836063 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Fabry-Perot optical micro-cavities based on coating-free all-silicon cylindrical Bragg reflectors. Malak M; Gaber N; Marty F; Pavy N; Richalot E; Bourouina T Opt Express; 2013 Jan; 21(2):2378-92. PubMed ID: 23389218 [TBL] [Abstract][Full Text] [Related]
7. Deep-Subwavelength-Optimized Holey-Structured Metamaterial Lens for Nonlinear Air-Coupled Ultrasonic Imaging. Boccaccio M; Rachiglia P; Malfense Fierro GP; Pio Pucillo G; Meo M Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562312 [TBL] [Abstract][Full Text] [Related]
8. Engineering the phase front of light with phase-change material based planar lenses. Chen Y; Li X; Sonnefraud Y; Fernández-Domínguez AI; Luo X; Hong M; Maier SA Sci Rep; 2015 Mar; 5():8660. PubMed ID: 25726864 [TBL] [Abstract][Full Text] [Related]
9. Focusing of longitudinal ultrasonic waves in air with an aperiodic flat lens. Welter JT; Sathish S; Christensen DE; Brodrick PG; Heebl JD; Cherry MR J Acoust Soc Am; 2011 Nov; 130(5):2789-96. PubMed ID: 22087907 [TBL] [Abstract][Full Text] [Related]
10. Superfocusing of terahertz wave through spoof surface plasmons. Huang TJ; Liu JY; Yin LZ; Han FY; Liu PK Opt Express; 2018 Sep; 26(18):22722-22732. PubMed ID: 30184928 [TBL] [Abstract][Full Text] [Related]
11. Light focusing at metallic annular slit structure coated with dielectric layers. Ko H; Kim HC; Cheng M Appl Opt; 2010 Feb; 49(6):950-4. PubMed ID: 20174163 [TBL] [Abstract][Full Text] [Related]
12. A novel approach to Fabry-Pérot-resonance-based lens and demonstrating deep-subwavelength imaging. Anzan-Uz-Zaman M; Song K; Lee DG; Hur S Sci Rep; 2020 Jul; 10(1):10769. PubMed ID: 32612240 [TBL] [Abstract][Full Text] [Related]
13. Dual-band tunable narrowband near-infrared light trapping control based on a hybrid grating-based Fabry-Perot structure. Zhou K; Cheng Q; Lu L; Li B; Song J; Luo Z Opt Express; 2020 Jan; 28(2):1647-1656. PubMed ID: 32121872 [TBL] [Abstract][Full Text] [Related]
14. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure. Jung BY; Kim NY; Lee C; Hwangbo CK; Seoul C Appl Opt; 2002 Jun; 41(16):3312-8. PubMed ID: 12064418 [TBL] [Abstract][Full Text] [Related]
16. A Hot-Polymer Fiber Fabry-Perot Interferometer Anemometer for Sensing Airflow. Lee CL; Liu KW; Luo SH; Wu MS; Ma CT Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869510 [TBL] [Abstract][Full Text] [Related]
17. Effect of finite amplitude of bottom corrugations on Fabry-Perot resonance of water waves. Zhang J; Benoit M Phys Rev E; 2019 May; 99(5-1):053109. PubMed ID: 31212525 [TBL] [Abstract][Full Text] [Related]
18. Deep THz modulation at Fabry-Perot resonances using graphene in periodic microslits. Liu X; Jia M; Fan S; Stantchev RI; Chen X; Pickwell-Macpherson E; Sun Y Opt Express; 2021 Feb; 29(4):6199-6208. PubMed ID: 33726146 [TBL] [Abstract][Full Text] [Related]
19. Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity-Towards Spectral Characteristics and Strain Sensing Technology. Wang Q; Yan D; Cui B; Guo Z Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587221 [TBL] [Abstract][Full Text] [Related]
20. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection. Zhang H; Muhammmad A; Luo J; Tong Q; Lei Y; Zhang X; Sang H; Xie C Appl Opt; 2014 Sep; 53(25):5632-9. PubMed ID: 25321356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]