These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35671601)

  • 1. Research on new treatment mode of radiotherapy based on pseudo-medical images.
    Sun H; Xi Q; Sun J; Fan R; Xie K; Ni X; Yang J
    Comput Methods Programs Biomed; 2022 Jun; 221():106932. PubMed ID: 35671601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of pseudo-CT images from pelvic MRI images based on an MD-CycleGAN model for radiotherapy.
    Sun H; Xi Q; Fan R; Sun J; Xie K; Ni X; Yang J
    Phys Med Biol; 2022 Jan; 67(3):. PubMed ID: 34879356
    [No Abstract]   [Full Text] [Related]  

  • 3. Pseudo-medical image-guided technology based on 'CBCT-only' mode in esophageal cancer radiotherapy.
    Sun H; Yang Z; Zhu J; Li J; Gong J; Chen L; Wang Z; Yin Y; Ren G; Cai J; Zhao L
    Comput Methods Programs Biomed; 2024 Mar; 245():108007. PubMed ID: 38241802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients.
    Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J
    Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging Study of Pseudo-CT Synthesized From Cone-Beam CT Based on 3D CycleGAN in Radiotherapy.
    Sun H; Fan R; Li C; Lu Z; Xie K; Ni X; Yang J
    Front Oncol; 2021; 11():603844. PubMed ID: 33777746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy.
    Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X
    Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on obtaining pseudo CT images based on stacked generative adversarial network.
    Sun H; Lu Z; Fan R; Xiong W; Xie K; Ni X; Yang J
    Quant Imaging Med Surg; 2021 May; 11(5):1983-2000. PubMed ID: 33936980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison and evaluation of different deep learning models of synthetic CT generation from CBCT for nasopharynx cancer adaptive proton therapy.
    Pang B; Si H; Liu M; Fu W; Zeng Y; Liu H; Cao T; Chang Y; Quan H; Yang Z
    Med Phys; 2023 Nov; 50(11):6920-6930. PubMed ID: 37800874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CBCT-based synthetic CT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma.
    Jihong C; Kerun Q; Kaiqiang C; Xiuchun Z; Yimin Z; Penggang B
    Sci Rep; 2023 Apr; 13(1):6624. PubMed ID: 37095147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy.
    Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S
    Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning.
    Peng Y; Chen S; Qin A; Chen M; Gao X; Liu Y; Miao J; Gu H; Zhao C; Deng X; Qi Z
    Radiother Oncol; 2020 Sep; 150():217-224. PubMed ID: 32622781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy.
    Fu J; Singhrao K; Cao M; Yu V; Santhanam AP; Yang Y; Guo M; Raldow AC; Ruan D; Lewis JH
    Biomed Phys Eng Express; 2020 Jan; 6(1):015033. PubMed ID: 33438621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preliminary study of using a deep convolution neural network to generate synthesized CT images based on CBCT for adaptive radiotherapy of nasopharyngeal carcinoma.
    Li Y; Zhu J; Liu Z; Teng J; Xie Q; Zhang L; Liu X; Shi J; Chen L
    Phys Med Biol; 2019 Jul; 64(14):145010. PubMed ID: 31170699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New technique and application of truncated CBCT processing in adaptive radiotherapy for breast cancer.
    Xie K; Gao L; Xi Q; Zhang H; Zhang S; Zhang F; Sun J; Lin T; Sui J; Ni X
    Comput Methods Programs Biomed; 2023 Apr; 231():107393. PubMed ID: 36739623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of Bayesian deep network uncertainty and its application to synthetic CT generation for MR-only radiotherapy treatment planning.
    Law MW; Tse MY; Ho LC; Lau KK; Wong OL; Yuan J; Cheung KY; Yu SK
    Med Phys; 2024 Feb; 51(2):1244-1262. PubMed ID: 37665783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudo-CT synthesis in adaptive radiotherapy based on a stacked coarse-to-fine model: Combing diffusion process and spatial-frequency convolutions.
    Sun H; Sun X; Li J; Zhu J; Yang Z; Meng F; Liu Y; Gong J; Wang Z; Yin Y; Ren G; Cai J; Zhao L
    Med Phys; 2024 Dec; 51(12):8979-8998. PubMed ID: 39298684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CBCT correction using a cycle-consistent generative adversarial network and unpaired training to enable photon and proton dose calculation.
    Kurz C; Maspero M; Savenije MHF; Landry G; Kamp F; Pinto M; Li M; Parodi K; Belka C; van den Berg CAT
    Phys Med Biol; 2019 Nov; 64(22):225004. PubMed ID: 31610527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformer CycleGAN with uncertainty estimation for CBCT based synthetic CT in adaptive radiotherapy.
    Rusanov B; Hassan GM; Reynolds M; Sabet M; Rowshanfarzad P; Bucknell N; Gill S; Dass J; Ebert M
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38198726
    [No Abstract]   [Full Text] [Related]  

  • 20. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy.
    Xue X; Ding Y; Shi J; Hao X; Li X; Li D; Wu Y; An H; Jiang M; Wei W; Wang X
    Technol Cancer Res Treat; 2021; 20():15330338211062415. PubMed ID: 34851204
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.